ﻻ يوجد ملخص باللغة العربية
Two-electron states bound to donors in silicon are important for both two qubit gates and spin readout. We present a full configuration interaction technique in the atomistic tight-binding basis to capture multi-electron exchange and correlation effects taking into account the full bandstructure of silicon and the atomic scale granularity of a nanoscale device. Excited $s$-like states of $A_1$-symmetry are found to strongly influence the charging energy of a negative donor centre. We apply the technique on sub-surface dopants subjected to gate electric fields, and show that bound triplet states appear in the spectrum as a result of decreased charging energy. The exchange energy, obtained for the two-electron states in various confinement regimes, may enable engineering electrical control of spins in donor-dot hybrid qubits.
We investigate a hybrid structure consisting of $20pm4$ implanted $^{31}$P atoms close to a gate-induced silicon single electron transistor (SiSET). In this configuration, the SiSET is extremely sensitive to the charge state of the nearby centers, tu
A solid-state analogue of Stimulated Raman Adiabatic Passage can be implemented in a triple well solid-state system to coherently transport an electron across the wells with exponentially suppressed occupation in the central well at any point of time
Donor spin in silicon have achieved record values of coherence times and single-qubit gate fidelities. The next stage of development involves demonstrating high-fidelity two-qubit logic gates, where the most natural coupling is the exchange interacti
Donors in silicon can now be positioned with an accuracy of about one lattice constant, making it possible in principle to form donor arrays for quantum computation or quantum simulation applications. However the multi-valley character of the silicon
We propose a method to electrically control electron spins in donor-based qubits in silicon. By taking advantage of the hyperfine coupling difference between a single-donor and a two-donor quantum dot, spin rotation can be driven by inducing an elect