ﻻ يوجد ملخص باللغة العربية
We investigate a hybrid structure consisting of $20pm4$ implanted $^{31}$P atoms close to a gate-induced silicon single electron transistor (SiSET). In this configuration, the SiSET is extremely sensitive to the charge state of the nearby centers, turning from the off state to the conducting state when the charge configuration is changed. We present a method to measure fast electron tunnel rates between donors and the SiSET island, using a pulsed voltage scheme and low-bandwidth current detection. The experimental findings are quantitatively discussed using a rate equation model, enabling the extraction of the capture and emission rates.
We report on the fabrication and electrical characterization at millikelvin temperatures of a novel silicon single-electron transistor (Si-SET). The island and source-drain leads of the Si-SET are formed by the implantation of phosphorus ions to a de
We investigate a silicon single-electron transistor (SET) in a metal-oxide-semiconductor (MOS) structure by applying a magnetic field perpendicular to the sample surface. The quantum dot is defined electrostatically in a point contact channel and by
We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid he
We present a realisation of high bandwidth instrumentation at cryogenic temperatures and for dilution refrigerator operation that possesses advantages over methods using radio-frequency single electron transistor or transimpedance amplifiers. The abi
Single dopants in semiconductor nanostructures have been studied in great details recently as they are good candidates for quantum bits, provided they are coupled to a detector. Here we report coupling of a single As donor atom to a single-electron t