ﻻ يوجد ملخص باللغة العربية
T2HK and T2HKK are the proposed extensions of the of T2K experiments in Japan and DUNE is the future long-baseline program of Fermilab. All these three experiments will use extremely high beam power and large detector volumes to observe neutrino oscillation. Because of the large statistics, these experiments will be highly sensitive to systematics. Thus a small change in the systematics can cause a significant change in their sensitivities. To understand this, we do a comparative study of T2HK, T2HKK and DUNE with respect to their systematic errors. Specifically we study the effect of the systematics in the determination of neutrino mass hierarchy, octant of the mixing angle $theta_{23}$ and $delta_{CP}$ in the standard three flavor scenario and also analyze the role of systematic uncertainties in constraining the parameters of the nonstandard interactions in neutrino propagation. Taking the overall systematics for signal and background normalization, we quantify how the sensitivities of these experiments change if the systematics are varied from $1%$ to $7%$.
We study the discovery potential for the mixing of heavy isospin-singlet neutrinos in extensions of the Tokai-to-Kamioka (T2K) experiment: The Tokai-to-Hyper-Kamiokande (T2HK), the Tokai-to-Hyper-Kamiokande-to-Korea (T2HKK), and a plan of adding a ne
It was shown that the tension between the mass-squared differences obtained from solar neutrinos and those acquired through KamLAND experiments may be solved by the introduction of a non-standard flavor-dependent interaction (NSI) in neutrino propaga
With the recent measurement of reactor mixing angle $theta_{13}$ the knowledge of neutrino oscillation parameters that describe PMNS matrix has improved significantly except the CP violating phase $delta_{CP}$. The other unknown parameters in neutrin
In this work we study the the sensitivity of the T2HKK experiment to probe non-standard interaction in neutrino propagation. As this experiment will be statistically dominated due to its large detector volume and high beam-power, it is expected that
We investigate the performance of T2HK in the presence of a light eV scale sterile neutrino. We study in detail its influence in resolving fundamental issues like mass hierarchy, CP-violation (CPV) induced by the standard CP-phase $delta_{13}$ and ne