ﻻ يوجد ملخص باللغة العربية
We investigate the performance of T2HK in the presence of a light eV scale sterile neutrino. We study in detail its influence in resolving fundamental issues like mass hierarchy, CP-violation (CPV) induced by the standard CP-phase $delta_{13}$ and new CP-phase $delta_{14}$, and the octant ambiguity of $theta_{23}$. We show for the first time in detail that due to the impressive energy reconstruction capabilities of T2HK, the available spectral information plays an important role to enhance the mass hierarchy discovery reach of this experiment in 3$ u$ framework and also to keep it almost intact even in $4 u$ scheme. This feature is also of the utmost importance in establishing the CPV due to $delta_{14}$. As far as the sensitivity to CPV due to $delta_{13}$ is concerned, it does not change much going from $3 u$ to 4$ u$ case. We also examine the reconstruction capability of the two phases $delta_{13}$ and $delta_{14}$, and find that the typical 1$sigma$ uncertainty on $delta_{13}$ ($delta_{14}$) in T2HK is $sim15^0$ ($30^0$). While determining the octant of $theta_{23}$, we face a complete loss of sensitivity for unfavorable combinations of unknown $delta_{13}$ and $delta_{14}$.
We investigate the implications of one light eV scale sterile neutrino on the physics potential of the proposed long-baseline experiment DUNE. If the future short-baseline experiments confirm the existence of sterile neutrinos, then it can affect the
Present global fits of world neutrino data hint towards non-maximal $theta_{23}$ with two nearly degenerate solutions, one in the lower octant ($theta_{23} <pi/4$), and the other in the higher octant ($theta_{23} >pi/4$). This octant ambiguity of $th
The existence of light sterile neutrinos is a long standing question for particle physics. Several experimental ``anomalies could be explained by introducing ~eV mass scaled light sterile neutrinos. Many experiments are actively hunting for such ligh
Recent neutrino experiment results show a preference for the normal neutrino mass ordering. The global efforts to search for neutrinoless double beta decays undergo a broad gap with the approach to the prediction in the three-neutrino framework based
ESS$ u$SB is a proposed neutrino super-beam project at the ESS facility. We study the performance of this setup in the presence of a light eV-scale sterile neutrino, considering 540 km baseline with 2 years (8 years) of $ u$ ($bar u$) run-plan. This