ﻻ يوجد ملخص باللغة العربية
A subset $B$ of an Abelian group $G$ is called a difference basis of $G$ if each element $gin G$ can be written as the difference $g=a-b$ of some elements $a,bin B$. The smallest cardinality $|B|$ of a difference basis $Bsubset G$ is called the difference size of $G$ and is denoted by $Delta[G]$. We prove that for every $ninmathbb N$ the cyclic group $C_n$ of order $n$ has difference size $frac{1+sqrt{4|n|-3}}2le Delta[C_n]lefrac32sqrt{n}$. If $nge 9$ (and $nge 2cdot 10^{15}$), then $Delta[C_n]lefrac{12}{sqrt{73}}sqrt{n}$ (and $Delta[C_n]<frac2{sqrt{3}}sqrt{n}$). Also we calculate the difference sizes of all cyclic groups of cardinality $le 100$.
A subset $B$ of a group $G$ is called a difference basis of $G$ if each element $gin G$ can be written as the difference $g=ab^{-1}$ of some elements $a,bin B$. The smallest cardinality $|B|$ of a difference basis $Bsubset G$ is called the difference
A subset $B$ of a group $G$ is called a difference basis of $G$ if each element $gin G$ can be written as the difference $g=ab^{-1}$ of some elements $a,bin B$. The smallest cardinality $|B|$ of a difference basis $Bsubset G$ is called the difference
The generalized wreath product of permutation groups is introduced. By means of it we study the schurity problem for S-rings over a cyclic group $G$ and the automorphism groups of them. Criteria for the schurity and non-schurity of the generalized wr
In his affirmative answer to the Edelman-Reiner conjecture, Yoshinaga proved that the logarithmic derivation modules of the cones of the extended Shi arrangements are free modules. However, all we know about the bases is their existence and degrees.
We give an algorithm to compute stable commutator length in free products of cyclic groups which is polynomial time in the length of the input, the number of factors, and the orders of the finite factors. We also describe some experimental and theoretical applications of this algorithm.