ترغب بنشر مسار تعليمي؟ اضغط هنا

Schurity of S-rings over a cyclic group and generalized wreath product of permutation groups

140   0   0.0 ( 0 )
 نشر من قبل Ilya Ponomarenko
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The generalized wreath product of permutation groups is introduced. By means of it we study the schurity problem for S-rings over a cyclic group $G$ and the automorphism groups of them. Criteria for the schurity and non-schurity of the generalized wreath product of two such S-rings are obtained. As a byproduct of the developed theory we prove that $G$ is a Schur group whenever the total number $Omega(n)$ of prime factors of the integer $n=|G|$ is at most 3. Moreover, we describe the structure of a non-schurian S-ring over $G$ when $Omega(n)=4$. The latter result implies in particular that if $n=p^3q$ where $p$ and $q$ are primes, then $G$ is a Schur group.



قيم البحث

اقرأ أيضاً

The recently developed theory of Schur rings over a finite cyclic group is generalized to Schur rings over a ring R being a product of Galois rings of coprime characteristics. It is proved that if the characteristic of R is odd, then as in the cyclic group case any pure Schur ring over R is the tensor product of a pure cyclotomic ring and Schur rings of rank 2 over non-fields. Moreover, it is shown that in contrast to the cyclic group case there are non-pure Schur rings over R that are not generalized wreath products.
A subset $B$ of an Abelian group $G$ is called a difference basis of $G$ if each element $gin G$ can be written as the difference $g=a-b$ of some elements $a,bin B$. The smallest cardinality $|B|$ of a difference basis $Bsubset G$ is called the diffe rence size of $G$ and is denoted by $Delta[G]$. We prove that for every $ninmathbb N$ the cyclic group $C_n$ of order $n$ has difference size $frac{1+sqrt{4|n|-3}}2le Delta[C_n]lefrac32sqrt{n}$. If $nge 9$ (and $nge 2cdot 10^{15}$), then $Delta[C_n]lefrac{12}{sqrt{73}}sqrt{n}$ (and $Delta[C_n]<frac2{sqrt{3}}sqrt{n}$). Also we calculate the difference sizes of all cyclic groups of cardinality $le 100$.
A commutative ring R has finite rank r, if each ideal of R is generated at most by r elements. A commutative ring R has the r-generator property, if each finitely generated ideal of R can be generated by r elements. Such rings are closely related to Prufer domains. In the present paper we investigate some analogs of these concepts for modules over group rings.
We define an excedance number for the multi-colored permutation group, i.e. the wreath product of Z_{r_1} x ... x Z_{r_k} with S_n, and calculate its multi-distribution with some natural parameters. We also compute the multi-distribution of the par ameters exc(pi) and fix(pi) over the sets of involutions in the multi-colored permutation group. Using this, we count the number of involutions in this group having a fixed number of excedances and absolute fixed points.
Powering the adjacency matrix of an expander graph results in a better expander of higher degree. In this paper we seek an analogue operation for high-dimensional expanders. We show that the naive approach to powering does not preserve high-dimension al expansion, and define a new power operation, using geodesic walks on quotients of Bruhat-Tits buildings. Applying this operation results in high-dimensional expanders of higher degrees. The crux of the proof is a combinatorial study of flags of free modules over finite local rings. Their geometry describes links in the power complex, and showing that they are excellent expanders implies high dimensional expansion for the power-complex by Garlands local-to-global technique. As an application, we use our power operation to obtain new efficient double samplers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا