ﻻ يوجد ملخص باللغة العربية
We study a one-dimensional topological superconductor, the Kitaev chain, under the influence of a non-Hermitian but $mathcal{PT}$-symmetric potential. This potential introduces gain and loss in the system in equal parts. We show that the stability of the topological phase is influenced by the gain/loss strength and explicitly derive the bulk topological invariant in a bipartite lattice as well as compute the corresponding phase diagram using analytical and numerical methods. Furthermore we find that the edge state is exponentially localized near the ends of the wire despite the presence of gain and loss of probability amplitude in that region.
We present a quantum master equation describing a Bose-Einstein condensate with particle loss on one lattice site and particle gain on the other lattice site whose mean-field limit is a non-Hermitian PT-symmetric Gross-Pitaevskii equation. It is show
The concept of topological phases has been generalized to higher-order topological insulators and superconductors with novel boundary states on corners or hinges. Meanwhile, recent experimental advances in controlling dissipation (such as gain and lo
We calculate the phase diagram of a model for topological superconducting wires with local s-wave pairing, spin-orbit coupling $vec{lambda}$ and magnetic field $vec{B}$ with arbitrary orientations. This model is a generalized lattice version of the o
Strongly driving a two-level quantum system with light leads to a ladder of Floquet states separated by the photon energy. Nanoscale quantum devices allow the interplay of confined electrons, phonons, and photons to be studied under strong driving co
We characterize the Majorana zero modes in topological hybrid superconductor-semiconductor wires with spin-orbit coupling and magnetic field, in terms of generalized Bloch coordinates $varphi, theta, delta$, and analyze their transformation under SU(