ﻻ يوجد ملخص باللغة العربية
We present a quantum master equation describing a Bose-Einstein condensate with particle loss on one lattice site and particle gain on the other lattice site whose mean-field limit is a non-Hermitian PT-symmetric Gross-Pitaevskii equation. It is shown that the characteristic properties of PT-symmetric systems, such as the existence of stationary states and the phase shift of pulses between two lattice sites, are also found in the many-particle system. Visualizing the dynamics on a Bloch sphere allows us to compare the complete dynamics of the master equation with that of the Gross-Pitaevskii equation. We find that even for a relatively small number of particles the dynamics are in excellent agreement and the master equation with balanced gain and loss is indeed an appropriate many-particle description of a PT-symmetric Bose-Einstein condensate.
In this work we present a new generic feature of PT-symmetric Bose-Einstein condensates by studying the many-particle description of a two-mode condensate with balanced gain and loss. This is achieved using a master equation in Lindblad form whose me
Most of the work done in the field of Bose-Einstein condensates with balanced gain and loss has been performed in the mean-field approximation using the PT-symmetric Gross-Pitaevskii equation. In this work we study the many-particle dynamics of a two
Balanced gain and loss renders the mean-field description of Bose-Einstein condensates PT symmetric. However, any experimental realization has to deal with unbalancing in the gain and loss contributions breaking the PT symmetry. We will show that suc
Bose-Einstein condensates with balanced gain and loss can support stationary states despite the exchange of particles with the environment. In the mean-field approximation this is described by the PT-symmetric Gross-Pitaevskii equation with real eige
We investigate the Su-Schrieffer-Heeger model in presence of an injection and removal of particles, introduced via a master equation in Lindblad form. It is shown that the dynamics of the density matrix follows the predictions of calculations in whic