ﻻ يوجد ملخص باللغة العربية
We present a new large-scale (4 square degrees) simultaneous $^{12}$CO, $^{13}$CO, and C$^{18}$O ($J$=1$-$0) mapping of L1188 with the PMO 13.7-m telescope. Our observations have revealed that L1188 consists of two nearly orthogonal filamentary molecular clouds at two clearly separated velocities. Toward the intersection showing large velocity spreads, we find several bridging features connecting the two clouds in velocity, and an open arc structure which exhibits high excitation temperatures, enhanced $^{12}$CO and $^{13}$CO emission, and broad $^{12}$CO line wings. This agrees with the scenario that the two clouds are colliding with each other. The distribution of young stellar object (YSO) candidates implies an enhancement of star formation in the intersection of the two clouds. We suggest that a cloud-cloud collision happened in L1188 about 1~Myr ago, possibly triggering the formation of low- and intermediate-mass YSOs in the intersection.
We present compelling observational evidence of G133.50+9.01 being a bona fide cloud-cloud collision candidate with signatures of induced filament, core, and cluster formation. The CO molecular line observations reveal that the G133.50+9.01 complex i
We have carried out a new kinematical analysis of the molecular gas in the Sh2-233 region by using the CO $J$ = 2-1 data taken at $sim$0.5 pc resolution. The molecular gas consists of a filamentary cloud of 5-pc length with 1.5-pc width where two den
This paper reports a re-analysis of archival ALMA data of the high velocity (-width) compact cloud (HVCC) CO-0.40-0.22, which has recently been hypothesized to host an intermediate-mass black Hole (IMBH). If beam-smearing effects, difference in beam
The temperature and density structure of molecular cloud cores are the most important physical quantities that determine the course of the protostellar collapse and the properties of the stars they form. Nevertheless, density profiles often rely eith
We present new large field observations of molecular clouds with NANTEN2 toward the super star cluster NGC3603 in the transitions 12CO(J=2-1, J=1-0) and 13CO(J=2-1, J=1-0). We suggest that two molecular clouds at 13 km s-1 and 28 km s-1 are associate