ﻻ يوجد ملخص باللغة العربية
This paper reports a re-analysis of archival ALMA data of the high velocity (-width) compact cloud (HVCC) CO-0.40-0.22, which has recently been hypothesized to host an intermediate-mass black Hole (IMBH). If beam-smearing effects, difference in beam sizes among frequency bands, and Doppler shift due to the motion of the Earth are considered accurately, none of the features reported as evidence for an IMBH in previous studies are confirmed in the re-analyzed ALMA images. Instead, through analysis of the position--velocity structure of the HCN J=3-2 data cube, we have found kinematics typical of a cloud-cloud collision (CCC), namely, two distinct velocity components bridged by broad emission features with elevated temperatures and/or densities. One velocity component has a straight filamentary shape with approximately constant centroid velocities along its length but with a steep, V-shaped velocity gradient across its width. This contradicts the IMBH scenario but is consistent with a collision between two dissimilar-sized clouds. From a non-LTE analysis of the multi-transition methanol lines, the volume density of the post-shock gas has been measured to be $gtrsim 10^6 mathrm{cm}^{-3}$, indicating that the CCC shock can compress gas in a short timescale to densities typical of star-forming regions. Evidence for star formation has not been found, possibly because the cloud is in an early phase of CCC-triggered star formation or because the collision is non-productive.
We report the first evidence for high-mass star formation triggered by collisions of molecular clouds in M33. Using the Atacama Large Millimeter/submillimeter Array, we spatially resolved filamentary structures of giant molecular cloud 37 in M33 usin
Context. Dense molecular filaments are ubiquituous in the interstellar medium, yet their internal physical conditions and formation mechanism remain debated. Aims. We study the kinematics and physical conditions in the Musca filament and the Chamaele
We present a new large-scale (4 square degrees) simultaneous $^{12}$CO, $^{13}$CO, and C$^{18}$O ($J$=1$-$0) mapping of L1188 with the PMO 13.7-m telescope. Our observations have revealed that L1188 consists of two nearly orthogonal filamentary molec
We have carried out a new kinematical analysis of the molecular gas in the Sh2-233 region by using the CO $J$ = 2-1 data taken at $sim$0.5 pc resolution. The molecular gas consists of a filamentary cloud of 5-pc length with 1.5-pc width where two den
We present the results of Atacama Large Millimeter/submillimeter Array (ALMA) observation in $^{12}$CO(1-0) emission at 0.58 $times$ 0.52 pc$^2$ resolution toward the brightest HII region N66 of the Small Magellanic Cloud (SMC). The $^{12}$CO(1-0) em