ﻻ يوجد ملخص باللغة العربية
We present a detailed study of the Vaidya solution and its generalization in de Rham-Gabadadze-Tolley (dRGT) theory. Since the diffeomorphism invariance can be restored with the St{u}ckelberg fields $phi^a$ introduced, there is a new invariant $I^{ab}=g^{mu u}partial_mu phi^apartial_ u phi^b$ in the massive gravity, which adds to the ones usually encountered in general relativity. There is no conventional Vaidya solution if we choose unitary gauge. In this paper, we obtain three types of self-consistent ansatz with some nonunitary gauge, and find accordingly the Vaidya, generalized Vaidya and furry Vaidya solution. As by-products, we obtain a series of furry black hole. The Vaidya solution and its generalization in dRGT massive gravity describe the black holes with a variable horizon.
We present a detailed study of the static spherically symmetric solutions in de Rham-Gabadadze-Tolley (dRGT) theory. Since the diffeomorphism invariance can be restored by introducing the St{u}ckelberg fields $phi^a$, there is new invariant $I^{ab}=g
The quasinormal modes of a massless Dirac field in the de Rham-Gabadadze-Tolley (dRGT) massive gravity theory with asymptotically de Sitter spacetime are investigated using the Wentzel- Kramers-Brillouin (WKB) approximation. The effective potential f
We investigate perturbations of a class of spherically symmetric solutions in massive gravity and bi-gravity. The background equations of motion for the particular class of solutions we are interested in reduce to a set of the Einstein equations with
Dynamical solutions are always of interest to people in gravity theories. We derive a series of generalized Vaidya solutions in the $n$-dimensional de Rham-Gabadadze-Tolley (dRGT) massive gravity with a singular reference metric. Similar to the case
We consider static cosmological solutions along with their stability properties in the framework of a recently proposed theory of massive gravity. We show that the modifcation introduced in the cosmological equations leads to several new solutions, o