ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasinormal modes of a massless Dirac field in de Rham-Gabadadze-Tolley massive gravity

125   0   0.0 ( 0 )
 نشر من قبل Ratchaphat Nakarachinda
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The quasinormal modes of a massless Dirac field in the de Rham-Gabadadze-Tolley (dRGT) massive gravity theory with asymptotically de Sitter spacetime are investigated using the Wentzel- Kramers-Brillouin (WKB) approximation. The effective potential for the massless Dirac field due to the dRGT black hole is derived. It is found that the shape of the potential depends crucially on the structure of the graviton mass and the behavior of the quasinormal modes is controlled by the graviton mass parameters. Higher potentials give stronger damping of the quasinormal modes. We compare our results to the Schwarzschild-de Sitter case. Our numerical calculations are checked using Pad$acute{e}$ approximation and found that the quasinormal mode frequencies converge to ones with reasonable accuracy.



قيم البحث

اقرأ أيضاً

149 - Ping Li , Xin-zhou Li , Ping Xi 2016
We present a detailed study of the static spherically symmetric solutions in de Rham-Gabadadze-Tolley (dRGT) theory. Since the diffeomorphism invariance can be restored by introducing the St{u}ckelberg fields $phi^a$, there is new invariant $I^{ab}=g ^{mu u}partial_{mu}phi^apartial_ uphi^b$ in the massive gravity, which adds to the ones usually encountered in general relativity (GR). In the unitary gauge $phi^a=x^mudelta_mu^a$, any inverse metric $g^{mu u}$ that has divergence including the coordinate singularity in GR would exhibit a singularity in the invariant $I^{ab}$. Therefore, there is no conventional Schwarzschild metric if we choose unitary gauge. In this paper, we obtain a self-consistent static spherically symmetric ansatz in the nonunitary gauge. Under this ansatz, we find that there are seven solutions including the Schwarzschild solution, Reissner-Nordstr{o}m solution and five other solutions. These solutions may possess an event horizon depending upon the physical parameters (Schwarzschild radius $r_s$, scalar charge $S$ and/or electric charge $Q$). If these solutions possess an event horizon, we show that the singularity of $I^{ab}$ is absent at the horizon. Therefore, these solutions may become candidates for black holes in dRGT.
We present a detailed study of the Vaidya solution and its generalization in de Rham-Gabadadze-Tolley (dRGT) theory. Since the diffeomorphism invariance can be restored with the St{u}ckelberg fields $phi^a$ introduced, there is a new invariant $I^{ab }=g^{mu u}partial_mu phi^apartial_ u phi^b$ in the massive gravity, which adds to the ones usually encountered in general relativity. There is no conventional Vaidya solution if we choose unitary gauge. In this paper, we obtain three types of self-consistent ansatz with some nonunitary gauge, and find accordingly the Vaidya, generalized Vaidya and furry Vaidya solution. As by-products, we obtain a series of furry black hole. The Vaidya solution and its generalization in dRGT massive gravity describe the black holes with a variable horizon.
In this paper, we study the quasinormal modes of the massless Dirac field for charged black holes in Rastall gravity. The spherically symmetric black hole solutions in question are characterized by the presence of a power-Maxwell field, surrounded by the quintessence fluid. The calculations are carried out by employing the WKB approximations up to the thirteenth order, as well as the matrix method. The temporal evolution of the quasinormal modes is investigated by using the finite difference method. Through numerical simulations, the properties of the quasinormal frequencies are analyzed, including those for the extremal black holes. Among others, we explore the case of a second type of extremal black holes regarding the Nariai solution, where the cosmical and event horizon coincide. The results obtained by the WKB approaches are found to be mostly consistent with those by the matrix method. It is demonstrated that the black hole solutions for Rastall gravity in asymptotically flat spacetimes are equivalent to those in Einstein gravity, featured by different asymptotical spacetime properties. As one of its possible consequences, we also investigate the behavior of the late-time tails of quasinormal models in the present model. It is found that the asymptotical behavior of the late-time tails of quasinormal modes in Rastall theory is governed by the asymptotical properties of the spacetimes of their counterparts in Einstein gravity.
129 - Peter Hintz , YuQing Xie 2021
We study the behavior of the quasinormal modes (QNMs) of massless and massive linear waves on Schwarzschild-de Sitter black holes as the black hole mass tends to 0. Via uniform estimates for a degenerating family of ODEs, we show that in bounded subs ets of the complex plane and for fixed angular momenta, the QNMs converge to those of the static model of de Sitter space. Detailed numerics illustrate our results and suggest a number of open problems.
We study the quasinormal modes of fermionic perturbations for an asymptotically Lifshitz black hole in 4-dimensions with dynamical exponent z=2 and plane topology for the transverse section, and we find analytically and numerically the quasinormal mo des for massless fermionic fields by using the improved asymptotic iteration method and the Horowitz-Hubeny method. The quasinormal frequencies are purely imaginary and negative, which guarantees the stability of these black holes under massless fermionic field perturbations. Remarkably, both numerical methods yield consistent results; i.e., both methods converge to the exact quasinormal frequencies; however, the improved asymptotic iteration method converges in a fewer number of iterations. Also, we find analytically the quasinormal modes for massive fermionic fields for the mode with lowest angular momentum. In this case, the quasinormal frequencies are purely imaginary and negative, which guarantees the stability of these black holes under fermionic field perturbations. Moreover, we show that the lowest quasinormal frequencies have real and imaginary parts for the mode with higher angular momentum by using the improved asymptotic iteration method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا