ترغب بنشر مسار تعليمي؟ اضغط هنا

Novel Kondo-like behavior near magnetic instability in SmB$_6$ : temperature and pressure dependences of Sm valence

90   0   0.0 ( 0 )
 نشر من قبل Naoya Emi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a systematic study of Sm valence in the prototypical intermediate valence compound SmB$_6$. Sm mean valence, $v_{rm Sm}$, was measured by X-ray absorption spectroscopy as functions of pressure ($1<P<13$ GPa) and temperature ($3<T<300$ K). Pressure induced magnetic order (MO) was detected above $P_c = 10$ GPa by resistivity measurements. A shift toward localized $4f$ state with increasing $P$ and/or $T$ is evident from an increase in $v_{rm Sm}$. However $v_{rm Sm}$ at $P_c$ is anomalously far below 3, which differs from the general case of nonmagnetic-magnetic transition in Yb and Ce compounds. From the $T$ dependence of $v_{rm Sm}(P,T)$, we found that $v_{rm Sm}(P,T)$ consists of two different characteristic components: one is associated with low-energy electronic correlations involving Kondo like behavior, and the other with high-energy valence fluctuations.



قيم البحث

اقرأ أيضاً

Samarium hexaboride is a topological Kondo insulator, with metallic surface states manifesting from its insulating band structure. Since the insulating bulk itself is driven by strong correlations, both the bulk and surface host compelling magnetic a nd electronic phenomena. We employed X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) at the Sm M$_{4,5}$ edges to measure surface and bulk magnetic properties of Sm$^{2+}$ and Sm$^{3+}$ within SmB$_6$. We observed anti-alignment to the applied field of the Sm$^{3+}$ magnetic dipole moment below $T = 75$ K and of the total orbital moment of samarium below 30 K. The induced Sm$^{3+}$ moment at the cleaved surface at 8 K and 6 T implies 1.5% of the total Sm as magnetized Sm$^{3+}$. The field dependence of the Sm$^{3+}$ XMCD dichorism at 8 K is diamagnetic and approximately linear. The bulk magnetization at 2 K is however driven by Sm$^{2+}$ Van Vleck susceptibility as well as 1% paramagnetic impurities with $mu_{rm Eff} = 5.2(1)~mu_{rm B}$. This indicates diamagnetic Sm$^{3+}$ is compensated within the bulk. The XAS and XMCD spectra are weakly affected by Sm vacancies and carbon doping while XAS is strongly affected by polishing.
We study the transport properties of the Kondo insulator SmB$_6$ with a specialized configuration designed to distinguish bulk-dominated conduction from surface-dominated conduction. We find that as the material is cooled below 4 K, it exhibits a cro ssover from bulk to surface conduction with a fully insulating bulk. We take the robustness and magnitude of the surface conductivity, as is manifest in the literature of SmB$_6$, to be strong evidence for the topological insulator metallic surface states recently predicted for this material.
The true topological nature of the Kondo insulator SmB$_6$ remains to be unveiled. Our previous tunneling study not only found evidence for the existence of surface Dirac fermions, but it also uncovered that they inherently interact with the spin exc itons, collective excitations in the bulk. We have extended such a spectroscopic investigation into crystals containing a Sm deficiency. The bulk hybridization gap is found to be insensitive to the deficiency up to 1% studied here, but the surface states in Sm-deficient crystals exhibit quite different temperature evolutions from those in stoichiometric ones. We attribute this to the topological surface states remaining incoherent down to the lowest measurement temperature due to their continued interaction with the spin excitons that remain uncondensed. This result shows that the detailed topological nature of SmB$_6$ could vary drastically in the presence of disorder in the lattice. This sensitiveness to disorder is seemingly contradictory to the celebrated topological protection, but it can be understood as being due to the intimate interplay between strong correlations and topological effects.
Recent quantum oscillation experiments on SmB$_6$ pose a paradox, for while the angular dependence of the oscillation frequencies suggest a 3D bulk Fermi surface, SmB$_6$ remains robustly insulating to very high magnetic fields. Moreover, a sudden lo w temperature upturn in the amplitude of the oscillations raises the possibility of quantum criticality. Here we discuss recently proposed mechanisms for this effect, contrasting bulk and surface scenarios. We argue that topological surface states permit us to reconcile the various data with bulk transport and spectroscopy measurements, interpreting the low temperature upturn in the quantum oscillation amplitudes as a result of surface Kondo breakdown and the high frequency oscillations as large topologically protected orbits around the X point. We discuss various predictions that can be used to test this theory.
A necessary element for the predicted topological state in Kondo insulator SmB$_6$ is the hybridization gap which opens in this compound at low temperatures. In this work, we present a comparative study of the in-gap density of states due to Sm vacan cies by Raman scattering spectroscopy and heat capacity for samples where the number of Sm vacancies is equal to or below 1 %. We demonstrate that hybridization gap is very sensitive to the presence of Sm vacancies. At the amount of vacancies above 1 % the gap fills in with impurity states and low temperature heat capacity is enhanced.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا