ﻻ يوجد ملخص باللغة العربية
We present the measured baseline ionization resolution of a HEMT-based cryogenic charge amplifier coupled to a CDMS-II detector. The amplifier has been developed to allow massive semiconductor dark matter detectors to retain background discrimination at the low recoil energies produced by low-mass WIMPs. We find a calibrated baseline ionization resolution of $sigma_E = 91,text{eV}_{ee}$. To our knowledge, this is the best direct ionization resolution achieved with such massive ($approx$150 pF capacitance) radiation detectors.
We present the technical design for the SuperCDMS high-voltage, low-mass dark matter detectors, designed to be sensitive to dark matter down to 300 MeV/$c^2$ in mass and resolve individual electron-hole pairs from low-energy scattering events in high
We present the noise performance of High Electron Mobility Transistors (HEMT) developed by CNRS-C2N laboratory. Various HEMTs gate geometries with 2 pF to 230 pF input capacitance have been studied at 4 K. A model for both voltage and current noises
The nature of dark matter is still an open problem, but there is evidence that a large part of the dark matter in the universe is non-baryonic, non-luminous and non-relativistic and hypothetical Weakly Interacting Massive Particles (WIMPs) are candid
More target mass is required in current TPC based directional dark matter detectors for improved detector sensitivity. This can be achieved by scaling up the detector volumes, but this results in the need for more analogue signal channels. A possible
The composition of dark matter is one of the puzzling topics in astrophysics. To address this issue, several experiments searching for the existence of axions have been designed, built and realized in the last twenty years. Among all the others, ligh