ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-noise HEMTs for Coherent Elastic Neutrino Scattering and Low-Mass Dark Matter Cryogenic Semiconductor Detectors

64   0   0.0 ( 0 )
 نشر من قبل Alexandre Juillard
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the noise performance of High Electron Mobility Transistors (HEMT) developed by CNRS-C2N laboratory. Various HEMTs gate geometries with 2 pF to 230 pF input capacitance have been studied at 4 K. A model for both voltage and current noises has been developed with frequency dependence up to 1 MHz. These HEMTs exhibit low dissipation, excellent noise performance and can advantageously replace traditional Si-JFETs for the readout of high impedance thermal sensor and semiconductor ionization cryogenic detectors. Our model predicts that cryogenic germanium detectors of 30 g with 10 eV heat and 20 eVee baseline resolution are feasible if read out by HEMT based amplifiers. Such resolution allows for high discrimination between nuclear and electron recoils at low threshold. This capability is of major interest for Coherent Elastic Neutrino Scattering and low-mass dark matter experiments such as Ricochet and EDELWEISS.



قيم البحث

اقرأ أيضاً

We report the first demonstration of a phonon-mediated silicon detector technology that provides a primary phonon measurement in a low-voltage region, and a simultaneous indirect measurement of the ionization signal through Neganov-Trofimov-Luke ampl ification in a high voltage region, both in a monolithic crystal. We present characterization of charge and phonon transport between the two stages of the detector and the resulting background discrimination capability at low energies. This new detector technology has the potential to significantly enhance the sensitivity of dark matter and coherent neutrino scattering experiments beyond the capabilities of current technologies that have limited discrimination at low energies.
Coherent elastic neutrino- and WIMP-nucleus interaction signatures are expected to be quite similar. This paper discusses how a next generation ton-scale dark matter detector could discover neutrino-nucleus coherent scattering, a precisely-predicted Standard Model process. A high intensity pion- and muon- decay-at-rest neutrino source recently proposed for oscillation physics at underground laboratories would provide the neutrinos for these measurements. In this paper, we calculate raw rates for various target materials commonly used in dark matter detectors and show that discovery of this interaction is possible with a 2 ton$cdot$year GEODM exposure in an optimistic energy threshold and efficiency scenario. We also study the effects of the neutrino source on WIMP sensitivity and discuss the modulated neutrino signal as a sensitivity/consistency check between different dark matter experiments at DUSEL. Furthermore, we consider the possibility of coherent neutrino physics with a GEODM module placed within tens of meters of the neutrino source.
A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind photomultiplier tube to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time of nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. We report on data from this chamber for thermodynamic Seitz thresholds from 4.2 to 15.0 keV. The observed single- and multiple-bubble rates when exposed to a $^{252}$Cf neutron source indicate that, for an 8.3-keV thermodynamic threshold, the minimum nuclear recoil energy required to nucleate a bubble is $19pm6$ keV (1$sigma$ uncertainty). This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at any of the thresholds studied, setting a 90% C.L. upper limit of $6.3times10^{-7}$ bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF$_3$I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils while nuclear recoils nucleate bubbles as usual. These measurements establish the noble-liquid bubble chamber as a promising new technology for the detection of weakly interacting massive particle dark matter and coherent elastic neutrino-nucleus scattering.
The nature of dark matter is still an open problem, but there is evidence that a large part of the dark matter in the universe is non-baryonic, non-luminous and non-relativistic and hypothetical Weakly Interacting Massive Particles (WIMPs) are candid ates that satisfy all of the above criteria. In order to minimize the ambiguities in the identification of WIMPs interactions in their search, in more experiments, two distinct quantities are simultaneously measured: the ionization and phonon or light from scintillation signals. Silicon and germanium crystals are used in some experiments. In this paper we discuss the production of defects in semiconductors due to WIMP interactions and estimate their contribution in the energy balance. This phenomenon is present at all temperatures, is important in the range of keV energies, but is not taken into consideration in the usual analysis of experimental signals and could introduce errors in identification for WIMPs.
118 - W.-Z. Wei , H. Mei , K. Kooi 2021
The detection of low-energy deposition in the range of sub-eV through ionization using germanium (Ge) with a bandgap of $sim$0.7 eV requires internal amplification of charge signal. This can be achieved through high electric field which accelerates c harge carriers to generate more charge carriers. The minimum electric field required to generate internal charge amplification is derived for different temperatures. A point contact Ge detector provides extremely high electric field in proximity to the point contact. We show the development of a planar point contact detector and its performance. The field distribution is calculated for this planar point contact detector. We demonstrate the required electric field can be achieved with a point contact detector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا