ﻻ يوجد ملخص باللغة العربية
We report the first realization of molecular beam epitaxy grown strained GaN quantum well field-effect transistors on single-crystal bulk AlN substrates. The fabricated double heterostructure FETs exhibit a two- dimensional electron gas (2DEG) density in excess of 2x10^13/cm2. Ohmic contacts to the 2DEG channel were formed by n+ GaN MBE regrowth process, with a contact resistance of 0.13 Ohm-mm. Raman spectroscopy using the quantum well as an optical marker reveals the strain in the quantum well, and strain relaxation in the regrown GaN contacts. A 65-nm-long rectangular-gate device showed a record high DC drain current drive of 2.0 A/mm and peak extrinsic transconductance of 250 mS/mm. Small-signal RF performance of the device achieved current gain cutoff frequency fT~120 GHz. The DC and RF performance demonstrate that bulk AlN substrates offer an attractive alternative platform for strained quantum well nitride transistors for future high-voltage and high-power microwave applications.
This work shows that the combination of ultrathin highly strained GaN quantum wells embedded in an AlN matrix, with controlled isotopic concentrations of Nitrogen enables a dual marker method for Raman spectroscopy. By combining these techniques, we
We study theoretically the electronic properties of $c$-plane GaN/AlN quantum dots (QDs) with focus on their potential as sources of single polarized photons for future quantum communication systems. Within the framework of eight-band k.p theory we c
We demonstrate the growth of GaN/AlN quantum well structures by plasma-assisted molecular-beam epitaxy by taking advantage of the surfactant effect of Ga. The GaN/AlN quantum wells show photoluminescence emission with photon energies in the range bet
N-polar GaN/AlN resonant tunneling diodes are realized on single-crystal N-polar GaN bulk substrate by plasma-assisted molecular beam epitaxy growth. The room-temperature current-voltage characteristics reveal a negative differential conductance (NDC
We report on sexithiophene films, about 150nm thick, grown by thermal evaporation on single crystal oxides and, as comparison, on Si/SiO2. By heating the entire deposition chamber at 100 C we obtain standing-up oriented molecules all over the bulk th