ترغب بنشر مسار تعليمي؟ اضغط هنا

Strained GaN Quantum-Well FETs on Single Crystal Bulk AlN Substrates

201   0   0.0 ( 0 )
 نشر من قبل Debdeep Jena
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first realization of molecular beam epitaxy grown strained GaN quantum well field-effect transistors on single-crystal bulk AlN substrates. The fabricated double heterostructure FETs exhibit a two- dimensional electron gas (2DEG) density in excess of 2x10^13/cm2. Ohmic contacts to the 2DEG channel were formed by n+ GaN MBE regrowth process, with a contact resistance of 0.13 Ohm-mm. Raman spectroscopy using the quantum well as an optical marker reveals the strain in the quantum well, and strain relaxation in the regrown GaN contacts. A 65-nm-long rectangular-gate device showed a record high DC drain current drive of 2.0 A/mm and peak extrinsic transconductance of 250 mS/mm. Small-signal RF performance of the device achieved current gain cutoff frequency fT~120 GHz. The DC and RF performance demonstrate that bulk AlN substrates offer an attractive alternative platform for strained quantum well nitride transistors for future high-voltage and high-power microwave applications.



قيم البحث

اقرأ أيضاً

This work shows that the combination of ultrathin highly strained GaN quantum wells embedded in an AlN matrix, with controlled isotopic concentrations of Nitrogen enables a dual marker method for Raman spectroscopy. By combining these techniques, we demonstrate the effectiveness in studying strain in the vertical direction. This technique will enable the precise probing of properties of buried active layers in heterostructures, and can be extended in the future to vertical devices such as those used for optical emitters, and for power electronics.
We study theoretically the electronic properties of $c$-plane GaN/AlN quantum dots (QDs) with focus on their potential as sources of single polarized photons for future quantum communication systems. Within the framework of eight-band k.p theory we c alculate the optical interband transitions of the QDs and their polarization properties. We show that an anisotropy of the QD confinement potential in the basal plane (e.g. QD elongation or strain anisotropy) leads to a pronounced linear polarization of the ground state and excited state transitions. An externally applied uniaxial stress can be used to either induce a linear polarization of the ground-state transition for emission of single polarized photons or even to compensate the polarization induced by the structural elongation.
We demonstrate the growth of GaN/AlN quantum well structures by plasma-assisted molecular-beam epitaxy by taking advantage of the surfactant effect of Ga. The GaN/AlN quantum wells show photoluminescence emission with photon energies in the range bet ween 4.2 and 2.3 eV for well widths between 0.7 and 2.6 nm, respectively. An internal electric field strength of $9.2pm 1.0$ MV/cm is deduced from the dependence of the emission energy on the well width.
N-polar GaN/AlN resonant tunneling diodes are realized on single-crystal N-polar GaN bulk substrate by plasma-assisted molecular beam epitaxy growth. The room-temperature current-voltage characteristics reveal a negative differential conductance (NDC ) region with a peak tunneling current of 6.8$pm$ 0.8 kA/cm$^2$ at a forward bias of ~8 V. Under reverse bias, the polarization-induced threshold voltage is measured at ~$-$4 V. These resonant and threshold voltages are well explained with the polarization field which is opposite to that of the metal-polar counterpart, confirming the N-polarity of the RTDs. When the device is biased in the NDC-region, electronic oscillations are generated in the external circuit, attesting to the robustness of the resonant tunneling phenomenon. In contrast to metal-polar RTDs, N-polar structures have the emitter on the top of the resonant tunneling cavity. As a consequence, this device architecture opens up the possibility of seamlessly interfacing$-$via resonant tunneling injection$-$a wide range of exotic materials with III-nitride semiconductors, providing a route to explore new device physics.
We report on sexithiophene films, about 150nm thick, grown by thermal evaporation on single crystal oxides and, as comparison, on Si/SiO2. By heating the entire deposition chamber at 100 C we obtain standing-up oriented molecules all over the bulk th ickness. Surface morphology shows step-like islands, each step being only one monolayer height. The constant and uniform warming of the molecules obtained by heating the entire deposition chamber allows a stable diffusion-limited growth process. Therefore, the regular growth kinetic is preserved when increasing the thickness of the film. Electrical measurements on differently structured films evidence the impact of the inter island separation region size on the main charge transport parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا