ترغب بنشر مسار تعليمي؟ اضغط هنا

Forecasting Tidal Disruption Events by Binary Black Hole Roulettes

91   0   0.0 ( 0 )
 نشر من قبل Naoki Seto
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the gravitational wave emission and the orbital evolution of a hierarchical triple system composed of an inner binary black hole (BBH) and an outer tertiary. Depending on the kick velocity at the merger, the merged BBH could tidally disrupt the tertiary. Even though the fraction of BBH mergers accompanied by such disruptions is expected to be much smaller than unity, the existence of a tertiary and its basic parameters (e.g. semimajor axis, projected mass) can be examined for more than 1000 BBHs with the space GW detector LISA and its follow-on missions. This allows us to efficiently prescreen the targets for the follow-up searches for the tidal disruption events (TDEs). The TDE probability would be significantly higher for triple systems with aligned orbital- and spin-angular momenta, compared with random configurations.



قيم البحث

اقرأ أيضاً

62 - Z.Q. Zhou 2020
Liu and collaborators recently proposed an elliptical accretion disk model for tidal disruption events (TDEs). They showed that the accretion disks of optical/UV TDEs are large and highly eccentric and suggested that the broad optical emission lines with complex and diverse profiles originate in the cool eccentric accretion disk of random inclination and orientation. In this paper, we calculate the radiation efficiency of the elliptical accretion disk and investigate the implications for the observations of TDEs. We compile observational data for the peak bolometric luminosity and total radiation energy after peak brightness of 18 TDE sources and compare these data to the predictions from the elliptical accretion disk model. Our results show that the observations are consistent with the theoretical predictions and that the majority of the orbital energy of the stellar debris is advected into the black hole (BH) without being converted into radiation. Furthermore, we derive the masses of the disrupted stars and the masses of the BHs of the TDEs. The BH masses obtained in this paper are also consistent with those calculated with the $M_{rm BH} - sigma_*$ relation. Our results provide an effective method for measuring the masses of BHs in large numbers of TDEs to be discovered in ongoing and next-generation sky surveys, regardless of whether the BHs are located at the centers of galactic nuclei or wander in disks and halos.
A tidal disruption event (TDE) ensues when a star passes too close to the supermassive black hole (SMBH) in a galactic center and is ripped apart by the tidal field of the SMBH. The gaseous debris produced in a TDE can power a bright electromagnetic flare as it is accreted by the SMBH; so far, several dozen TDE candidates have been observed. For SMBHs with masses above $sim 10^7 M_odot$, the tidal disruption of solar-type stars occurs within ten gravitational radii of the SMBH, implying that general relativity (GR) is needed to describe gravity. Three promising signatures of GR in TDEs are: (1) a super-exponential cutoff in the volumetric TDE rate for SMBH masses above $sim 10^8 M_odot$ due to direct capture of tidal debris by the event horizon, (2) delays in accretion disk formation (and a consequent alteration of the early-time light curve) caused by the effects of relativistic precession on stream circularization, and (3) quasi-periodic modulation of X-ray emission due to global precession of misaligned accretion disks and the jets they launch. We review theoretical models and simulations of TDEs in Newtonian gravity, then describe how relativistic modifications give rise to these proposed observational signatures, as well as more speculative effects of GR. We conclude with a brief summary of TDE observations and the extent to which they show indications of these predicted relativistic signatures.
95 - Suvi Gezari 2021
The concept of stars being tidally ripped apart and consumed by a massive black hole (MBH) lurking in the center of a galaxy first captivated theorists in the late 1970s. The observational evidence for these rare but illuminating phenomena for probin g otherwise dormant MBHs, first emerged in archival searches of the soft X-ray ROSAT All-Sky Survey in the 1990s; but has recently accelerated with the increasing survey power in the optical time domain, with tidal disruption events (TDEs) now regarded as a class of optical nuclear transients with distinct spectroscopic features. Multiwavelength observations of TDEs have revealed panchromatic emission, probing a wide range of scales, from the innermost regions of the accretion flow, to the surrounding circumnuclear medium. I review the current census of 56 TDEs reported in the literature, and their observed properties can be summarized as follows: $bullet$ The optical light curves follow a power-law decline from peak that scales with the inferred central black hole mass as expected for the fallback rate of the stellar debris, but the rise time does not. $bullet$ The UV/optical and soft X-ray thermal emission come from different spatial scales, and their intensity ratio has a large dynamic range, and is highly variable, providing important clues as to what is powering the two components. $bullet$ They can be grouped into three spectral classes, and those with Bowen fluorescence line emission show a preference for a hotter and more compact line-emitting region, while those with only He II emission lines are the rarest class.
As the sensitivity of gravitational wave (GW) instruments improves and new networks start operating, hundreds of merging stellar-mass black holes (SBHs) and intermediate-mass black holes (IMBHs) are expected to be observed in the next few years. The origin and distribution of SBH and IMBH binaries in various dynamical environments is a fundamental scientific question in GW astronomy. In this paper, we discuss ways tidal disruption events (TDEs) may provide a unique electromagnetic window into the assembly and merger of binary SBHs and IMBHs in nuclear star clusters (NSCs). We discuss how the host NSC mass and density and the slope of the black-hole mass function set the orbital properties and the masses of the binaries that undergo a TDE. For typical NSC properties, we predict a TDE rate of $sim 10^{-6}$--$10^{-7} {rm yr}^{-1}$ per galaxy. The lightcurve of TDEs in NSCs could be interrupted and modulated by the companion black hole on the orbital period of the binary. These should be readily detectable by optical transient surveys such as the Zwicky Transient Facility and LSST.
177 - F. K. Liu 2009
Supermassive black hole binaries (SMBHBs) are products of galaxy mergers, and are important in testing Lambda cold dark matter cosmology and locating gravitational-wave-radiation sources. A unique electromagnetic signature of SMBHBs in galactic nucle i is essential in identifying the binaries in observations from the IR band through optical to X-ray. Recently, the flares in optical, UV, and X-ray caused by supermassive black holes (SMBHs) tidally disrupting nearby stars have been successfully used to observationally probe single SMBHs in normal galaxies. In this Letter, we investigate the accretion of the gaseous debris of a tidally disrupted star by a SMBHB. Using both stability analysis of three-body systems and numerical scattering experiments, we show that the accretion of stellar debris gas, which initially decays with time $propto t^{-5/3}$, would stop at a time $T_{rm tr} simeq eta T_{rm b}$. Here, $eta sim0.25$ and $T_{rm b}$ is the orbital period of the SMBHB. After a period of interruption, the accretion recurs discretely at time $T_{rm r} simeq xi T_b$, where $xi sim 1$. Both $eta$ and $xi$ sensitively depend on the orbital parameters of the tidally disrupted star at the tidal radius and the orbit eccentricity of SMBHB. The interrupted accretion of the stellar debris gas gives rise to an interrupted tidal flare, which could be used to identify SMBHBs in non-active galaxies in the upcoming transient surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا