ترغب بنشر مسار تعليمي؟ اضغط هنا

Interruption of Tidal Disruption Flares By Supermassive Black Hole Binaries

177   0   0.0 ( 0 )
 نشر من قبل Fukun Liu
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. K. Liu




اسأل ChatGPT حول البحث

Supermassive black hole binaries (SMBHBs) are products of galaxy mergers, and are important in testing Lambda cold dark matter cosmology and locating gravitational-wave-radiation sources. A unique electromagnetic signature of SMBHBs in galactic nuclei is essential in identifying the binaries in observations from the IR band through optical to X-ray. Recently, the flares in optical, UV, and X-ray caused by supermassive black holes (SMBHs) tidally disrupting nearby stars have been successfully used to observationally probe single SMBHs in normal galaxies. In this Letter, we investigate the accretion of the gaseous debris of a tidally disrupted star by a SMBHB. Using both stability analysis of three-body systems and numerical scattering experiments, we show that the accretion of stellar debris gas, which initially decays with time $propto t^{-5/3}$, would stop at a time $T_{rm tr} simeq eta T_{rm b}$. Here, $eta sim0.25$ and $T_{rm b}$ is the orbital period of the SMBHB. After a period of interruption, the accretion recurs discretely at time $T_{rm r} simeq xi T_b$, where $xi sim 1$. Both $eta$ and $xi$ sensitively depend on the orbital parameters of the tidally disrupted star at the tidal radius and the orbit eccentricity of SMBHB. The interrupted accretion of the stellar debris gas gives rise to an interrupted tidal flare, which could be used to identify SMBHBs in non-active galaxies in the upcoming transient surveys.



قيم البحث

اقرأ أيضاً

Galaxy mergers produce supermassive black hole binaries, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries o f its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade.
Optical transient surveys have led to the discovery of dozens of stellar tidal disruption events (TDEs) by massive black hole in the centers of galaxies. Despite extensive searches, X-ray follow-up observations have produced no or only weak X-ray det ections in most of them. Here we report the discovery of delayed X-ray brightening around 140 days after the optical outburst in the TDE OGLE16aaa, followed by several flux dips during the decay phase. These properties are unusual for standard TDEs and could be explained by the presence of supermassive black hole binary or patchy obscuration. In either scenario, the X-rays can be produced promptly after the disruption but are blocked in the early phase, possibly by a radiation-dominated ejecta which leads to the bulk of optical and ultraviolet emission. Our findings imply that the reprocessing is important in the TDE early evolution, and X-ray observations are promising in revealing supermassive black hole binaries.
173 - Xian Chen , 2007
Supermassive black hole binaries (SMBHBs) are expected by the hierarchical galaxy formation model in $Lambda$CDM cosmology. There is some evidence in the literature for SMBHBs in AGNs, but there are few observational constraints on the evolution of S MBHBs in inactive galaxies and gas-poor mergers. On the theoretical front, it is unclear how long is needed for a SMBHB in a typical galaxy to coalesce. In this paper we investigate the tidal interaction between stars and binary BHs and calculate the tidal disruption rates of stellar objects by the BH components of binary. We derive the interaction cross sections between SMBHBs and stars from intensive numerical scattering experiments with particle number $sim10^7$ and calculate the tidal disruption rates by both single and binary BHs for a sample of realistic galaxy models, taking into account the general relativistic effect and the loss cone refilling because of two-body interaction. We estimate the frequency of tidal flares for different types of galaxies using the BH mass function in the literature. We find that because of the three-body slingshot effect, the tidal disruption rate in SMBHB system is more than one order of magnitude smaller than that in single SMBH system. The difference is more significant in less massive galaxies and does not depend on detailed stellar dynamical processes. Our calculations suggest that comparisons of the calculated tidal disruption rates for both single and binary BHs and the surveys of X-ray or UV flares at galactic centers could tell us whether most SMBHs in nearby galaxies are single and whether the SMBHBs formed in gas-poor galaxy mergers coalesce rapidly.
Aims: A strong, hard X-ray flare was discovered (IGR J12580+0134) by INTEGRAL in 2011, and is associated to NGC 4845, a Seyfert 2 galaxy never detected at high-energy previously. To understand what happened we observed this event in the X-ray band on several occasions. Methods: Follow-up observations with XMM-Newton, Swift, and MAXI are presented together with the INTEGRAL data. Long and short term variability are analysed and the event wide band spectral shape modelled. Results: The spectrum of the source can be described with an absorbed (N_H ~ 7x10^22 cm^{-2}) power law (Gamma simeq 2.2), characteristic of an accreting source, plus a soft X-ray excess, likely to be of diffuse nature. The hard X-ray flux increased to maximum in a few weeks and decreased over a year, with the evolution expected for a tidal disruption event. The fast variations observed near the flare maximum allowed us to estimate the mass of the central black hole in NGC 4845 as ~ 3x10^5 Msun. The observed flare corresponds to the disruption of about 10% of an object with a mass of 14-30 Jupiter. The hard X-ray emission should come from a corona forming around the accretion flow close to the black hole. This is the first tidal event where such a corona has been observed.
We consider misaligned accretion discs formed after tidal disruption events occurring when a star encounters a supermassive rotating black hole. We use the linear theory of warped accretion discs to find the disc shape when the stream produced by the disrupted star provides a source of mass and angular momentum that is misaligned with the black hole. The evolution of the surface density and aspect ratio is found from a one dimensional vertically averaged model. We extend previous work which assumed a quasi-stationary disc to allow unrestricted dynamical propagation of disc tilt and twist through time dependent backgrounds. We consider a smaller value of the viscosity parameter, $alpha =0.01,$ finding the dynamics varies significantly. At early times the disc inclination is found to be nearly uniform at small radii where the aspect ratio is large. However, since torques arise from the Lense-Thirring effect and the stream there is non uniform precession. We propose a simple model for this requiring only the background surface density and aspect ratio. At these times the $alpha sim 0.01$ disc exhibits a new feature. An inclined hot inner region joins an outer low inclination cool region via a thin transition front propagating outwards with a speed exceeding that of bending waves in the cool region. These waves accumulate where the propagation speeds match producing an inclination spike separating inner and outer discs. At late times a sequence of quasi-stationary configurations approximates disc shapes at small radii. We discuss observational implications of our results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا