ﻻ يوجد ملخص باللغة العربية
We present energy-momentum mapping of surface Dirac photocurrent in the topological insulator Sb$_2$Te$_3$ by means of time- and angle-resolved two-photon photoemission spectroscopy combined with polarization-variable mid-infrared pulse laser. It is demonstrated that the direct optical transition from the occupied to the unoccupied part of the surface Dirac-cone permits the linear and circular photogalvanic effect which thereby enables us to coherently control the surface electric-current by laser polarization. Moreover, the surface current mapping directly visualizes ultrafast current dynamics in the Dirac cone in the time domain. We unravel the ultrafast intraband relaxation dynamics of the inelastic scattering and momentum scattering separately. Our observations pave the pathway for coherent optical control over surface Dirac electrons in topological insulators.
A new type of topological spin-helical surface states was discovered in layered van der Waals bonded (SnTe)$_{n=2,3}$(Bi$_2$Te$_3$)$_{m=1}$ compounds which comprise two covalently bonded band inverted subsystems, SnTe and Bi$_2$Te$_3$, within a build
Alloys of Bi$_2$Te$_3$ and Sb$_2$Te$_3$ ((Bi$_{1-x}$Sb$_x$)$_2$Te$_3$) have played an essential role in the exploration of topological surface states, allowing us to study phenomena that would otherwise be obscured by bulk contributions to conductivi
The ferromagnetic topological insulator V:(Bi,Sb)$_2$Te$_3$ has been recently reported as a quantum anomalous Hall (QAH) system. Yet the microscopic origins of the QAH effect and the ferromagnetism remain unclear. One key aspect is the contribution o
We investigate the photocurrent properties of the topological insulator (Bi$_{0.5}$Sb$_{0.5}$)$_2$Te$_3$ on SrTiO$_3$-substrates. We find reproducible, submicron photocurrent patterns generated by long-range chemical potential fluctuations, occurring
Modification of the gap at the Dirac point (DP) in antiferromagnetic (AFM) axion topological insulator MnBi$_2$Te$_4$ and its electronic and spin structure has been studied by angle- and spin-resolved photoemission spectroscopy (ARPES) under laser ex