ﻻ يوجد ملخص باللغة العربية
The small-scale bipolar jets having short dynamical ages from water fountain (WF) sources are regarded as an indication of the onset of circumstellar envelope morphological metamorphosis of intermediate-mass stars. Such process usually happens at the end of the asymptotic giant branch (AGB) phase. However, recent studies found that WFs could be AGB stars or even early planetary nebulae. This fact prompted the idea that WFs may not necessarily be objects at the beginning of the morphological transition process. In the present work, we show that WFs could have different envelope morphologies by studying their spectral energy distribution profiles. Some WFs have spherical envelopes that resembles usual AGB stars, while others have aspherical envelopes which are more common to post-AGB stars. The results imply that WFs may not represent the earliest stage of the morphological metamorphosis. We further argue that the dynamical age of a WF jet, which can be calculated from maser proper motions, may not be the real age of the jet. The dynamical age cannot be used to justify the moment when the envelope begins to become aspherical, nor to tell the concrete evolutionary status of the object. A WF jet could be the innermost part of a larger well-developed jet, which is not necessarily a young jet.
We briefly introduce the VLBI maser astrometric analysis of IRAS 18043-2116 and IRAS 18113-2503, two remarkable and unusual water fountains with spectacular bipolar bow shocks in their high-speed collimated jet-driven outflows. The 22 GHz H2O maser s
Water fountain stars (WFs) are evolved objects with water masers tracing high-velocity jets (up to several hundreds of km s$^{-1}$). They could represent one of the first manifestations of collimated mass-loss in evolved objects and thus, be a key to
Carbon monoxide (CO) is the most abundant molecule after molecular hydrogen and is important for the chemistry in circumstellar envelopes around evolved stars. When modelling the strength and shape of molecular lines, the size of the CO envelope is a
We have mapped 12CO J=3-2 and other molecular lines from the water-fountain bipolar pre-planetary nebula (PPN) IRAS 16342-3814 with ~0.35 resolution using ALMA. We find (i) two very high-speed knotty, jet-like molecular outflows, (ii) a central high-
We present Expanded Very Large Array (EVLA) water maser observations at 22 GHz toward the source IRAS 18113-2503. Maser components span over a very high velocity range of ~500 km/s, the second largest found in a Galactic maser, only surpassed by the