ترغب بنشر مسار تعليمي؟ اضغط هنا

Bow shocks in water fountain jets

162   0   0.0 ( 0 )
 نشر من قبل Gabor Orosz PhD
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We briefly introduce the VLBI maser astrometric analysis of IRAS 18043-2116 and IRAS 18113-2503, two remarkable and unusual water fountains with spectacular bipolar bow shocks in their high-speed collimated jet-driven outflows. The 22 GHz H2O maser structures and velocities clearly show that the jets are formed in very short-lived, episodic outbursts, which may indicate episodic accretion in an underlying binary system.



قيم البحث

اقرأ أيضاً

We report the first detection of submillimeter water maser emission toward water-fountain nebulae, which are post-AGB stars that exhibit high-velocity water masers. Using APEX we found emission in the ortho-H2O (10_29-9_36) transition at 321.226 GHz toward three sources: IRAS 15445-5449, IRAS 18043-2116 and IRAS 18286-0959. Similarly to the 22 GHz masers, the submillimeter water masers are expanding with a velocity larger than that of the OH masers, suggesting that these masers also originate in fast bipolar outflows. In IRAS 18043-2116 and IRAS 18286-0959, which figure among the sources with the fastest water masers, the velocity range of the 321 GHz masers coincides with that of the 22 GHz masers, indicating that they likely coexist. Towards IRAS 15445-5449 the submillimeter masers appear in a different velocity range, indicating that they are tracing different regions. The intensity of the submillimeter masers is comparable to that of the 22 GHz masers, implying that the kinetic temperature of the region where the masers originate should be Tk > 1000 K. We propose that the passage of two shocks through the same gas can create the conditions necessary to explain the presence of strong high-velocity 321 GHz masers coexisting with the 22 GHz masers in the same region.
The small-scale bipolar jets having short dynamical ages from water fountain (WF) sources are regarded as an indication of the onset of circumstellar envelope morphological metamorphosis of intermediate-mass stars. Such process usually happens at the end of the asymptotic giant branch (AGB) phase. However, recent studies found that WFs could be AGB stars or even early planetary nebulae. This fact prompted the idea that WFs may not necessarily be objects at the beginning of the morphological transition process. In the present work, we show that WFs could have different envelope morphologies by studying their spectral energy distribution profiles. Some WFs have spherical envelopes that resembles usual AGB stars, while others have aspherical envelopes which are more common to post-AGB stars. The results imply that WFs may not represent the earliest stage of the morphological metamorphosis. We further argue that the dynamical age of a WF jet, which can be calculated from maser proper motions, may not be the real age of the jet. The dynamical age cannot be used to justify the moment when the envelope begins to become aspherical, nor to tell the concrete evolutionary status of the object. A WF jet could be the innermost part of a larger well-developed jet, which is not necessarily a young jet.
Water fountain stars (WFs) are evolved objects with water masers tracing high-velocity jets (up to several hundreds of km s$^{-1}$). They could represent one of the first manifestations of collimated mass-loss in evolved objects and thus, be a key to understanding the shaping mechanisms of planetary nebulae. Only 13 objects had been confirmed so far as WFs with interferometer observations. We present new observations with the Australia Telescope Compact Array and archival observations with the Very Large Array of four objects that are considered to be WF candidates, mainly based on single-dish observations. We confirm IRAS 17291-2147 and IRAS 18596+0315 (OH 37.1-0.8) as bona fide members of the WF class, with high-velocity water maser emission consistent with tracing bipolar jets. We argue that IRAS 15544-5332 has been wrongly considered as a WF in previous works, since we see no evidence in our data nor in the literature that this object harbours high-velocity water maser emission. In the case of IRAS 19067+0811, we did not detect any water maser emission, so its confirmation as a WF is still pending. With the result of this work, there are 15 objects that can be considered confirmed WFs. We speculate that there is no significant physical difference between WFs and obscured post-AGB stars in general. The absence of high-velocity water maser emission in some obscured post-AGB stars could be attributed to a variability or orientation effect.
We report Spitzer observations of five newly identified bow shocks in the massive star-forming region RCW 38. Four are visible at IRAC wavelengths, the fifth is visible only at 24 microns. Chandra X-ray emission indicates that winds from the central O5.5 binary, IRS~2, have caused an outflow to the NE and SW of the central subcluster. The southern lobe of hot ionised gas is detected in X-rays; shocked gas and heated dust from the shock-front are detected with Spitzer at 4.5 and 24 microns. The northern outflow may have initiated the present generation of star formation, based on the filamentary distribution of the protostars in the central subcluster. Further, the bow-shock driving star, YSO 129, is photo-evaporating a pillar of gas and dust. No point sources are identified within this pillar at near- to mid-IR wavelengths. We also report on IRAC 3.6 & 5.8 micron observations of the cluster DBS2003-124, NE of RCW 38, where 33 candidate YSOs are identified. One star associated with the cluster drives a parsec-scale jet. Two candidate HH objects associated with the jet are visible at IRAC and MIPS wavelengths. The jet extends over a distance of ~3 pc. Assuming a velocity of 100 km/s for the jet material gives an age of about 30,000 years, indicating that the star (and cluster) are likely to be very young, with a similar or possibly younger age than RCW 38, and that star formation is ongoing in the extended RCW 38 region.
Water fountains (WFs) are evolved objects showing high-velocity, collimated jets traced by water maser emission. Most of them are in the post-Asymptotic Giant Branch and they may represent one of the first manifestations of collimated mass loss in ev olved stars. We present water maser, carbon monoxide, and mid-infrared spectroscopic data (obtained with the Australia Telescope Compact Array, Herschel Space Observatory, and the Very Large Telescope, respectively) toward IRAS 15103--5754, a possible planetary nebula (PN) with WF characteristics. Carbon monoxide observations show that IRAS 15103-5754 is an evolved object, while the mid-IR spectrum displays unambiguous [NeII] emission, indicating that photoionization has started and thus, its nature as a PN is confirmed. Water maser spectra show several components spreading over a large velocity range ~75 km/s and tracing a collimated jet. This indicates that the object is a WF, the first WF known that has already entered the PN phase. However, the spatial and kinematical distribution of the maser emission in this object are significantly different from those in other WFs. Moreover, the velocity distribution of the maser emission shows a Hubble-like flow (higher velocities at larger distances from the central star), consistent with a short-lived, explosive mass-loss event. This velocity pattern is not seen in other WFs (presumably in earlier evolutionary stages). We therefore suggest that we are witnessing a fundamental change of mass-loss processes in WFs, with water masers being pumped by steady jets in post-AGB stars, but tracing explosive/ballistic events as the object enters the PN phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا