ﻻ يوجد ملخص باللغة العربية
Optical frequency comb (OFC) technology has been the cornerstone for scientific breakthroughs such as precision frequency metrology, redefinition of time, extreme light-matter interaction, and attosecond sciences. While the current mode-locked laser-based OFC has had great success in extending the scientific frontier, its use in real-world applications beyond the laboratory setting remains an unsolved challenge. Microresonator-based OFCs, or Kerr frequency comb, have recently emerged as a candidate solution to the challenge because of their preferable size, weight, and power consumption (SWaP). On the other hand, the current phase stabilization technology requires either external optical references or power-demanding nonlinear processes, overturning the SWaP benefit of Kerr frequency combs. Introducing a new concept in phase control, here we report an internally phase stabilized Kerr frequency comb without the need of any optical references or nonlinear processes. We describe the comb generation analytically with the theory of cavity induced modulation instability, and demonstrate for the first time that the optical frequency can be stabilized by control of two internally accessible parameters: an intrinsic comb offset and the comb spacing. Both parameters are phase locked to microwave references, with 55 mrad and 20 mrad residual phase noises, and the resulting comb-to-comb frequency uncertainty is 0.08 Hz or less. Out-of-loop measurements confirm good coherence and stability across the comb, with measured optical frequency fractional instabilities of 5x10^-11/sqrt(t). The new phase stabilization method preserves the Kerr frequency combs key advantages and potential for chip-scale electronic and photonic integration.
We demonstrate control and stabilization of an optical frequency comb generated by four-wave mixing in a monolithic microresonator with a mode spacing in the microwave regime (86 GHz). The comb parameters (mode spacing and offset frequency) are contr
We experimentally demonstrate phase retrieval of a single-soliton Kerr comb using electric field cross-correlation implemented via dual-comb interferometry. The phase profile of the Kerr comb is acquired through the heterodyne beat between the Kerr c
Microresonator-based soliton frequency combs - microcombs - have recently emerged to offer low-noise, photonic-chip sources for optical measurements. Owing to nonlinear-optical physics, microcombs can be built with various materials and tuned or stab
We present full phase stabilization of an amplified Yb:fiber femtosecond frequency comb using an intra-cavity electro-optic modulator and an acousto-optic modulator. These transducers provide high servo bandwidths of 580 kHz and 250 kHz for frep and
We demonstrate a new technique for the experimental measurement of the spectral coherence of microresonator optical frequency combs. Specifically, we use a spectral interference method, typically used in the context of supercontinuum generation, to e