ﻻ يوجد ملخص باللغة العربية
We experimentally demonstrate phase retrieval of a single-soliton Kerr comb using electric field cross-correlation implemented via dual-comb interferometry. The phase profile of the Kerr comb is acquired through the heterodyne beat between the Kerr comb and a reference electro-optical comb with a pre-characterized phase profile. The soliton Kerr comb has a nearly flat phase profile, and the pump line is observed to show a phase offset which depends on the pumping parameters. The experimental results are in agreement with numerical simulations. Our all-linear approach enables rapid measurements (3.2 $mu$s) with low input power (20 $mu$W).
Dissipative Kerr cavity solitons (DKSs) are localized particle-like wave packets that have attracted peoples great interests in the past decades. Besides being an excellent candidate for studying nonlinear physics, DKSs can also enable the generation
Fast-responding detector arrays are commonly used for imaging rapidly-changing scenes. Besides array detectors, a single-pixel detector combined with a broadband optical spectrum can also be used for rapid imaging by mapping the spectrum into a spati
Kerr soliton frequency comb generation in monolithic microresonators recently attracted great interests as it enables chip-scale few-cycle pulse generation at microwave rates with smooth octave-spanning spectra for self-referencing. Such versatile pl
Optical frequency comb (OFC) technology has been the cornerstone for scientific breakthroughs such as precision frequency metrology, redefinition of time, extreme light-matter interaction, and attosecond sciences. While the current mode-locked laser-
The impact of photodetector nonlinearity on dual-comb spectrometers is described and compared to that of Michelson-based Fourier transform spectrometers (FTS). The optical sampling occurring in the dual-comb approach, being the key difference with FT