ترغب بنشر مسار تعليمي؟ اضغط هنا

Muon spin rotation and infrared spectroscopy study of magnetism and superconductivity in Ba$ _{1-x} $K$ _{x} $Fe$ _{2} $As$ _{2} $

91   0   0.0 ( 0 )
 نشر من قبل Ben Mallett
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using muon spin rotation and infrared spectroscopy we study the relation between magnetism and superconductivity in Ba$ _{1-x} $K$ _{x} $Fe$ _{2} $As$ _{2} $ single crystals from the underdoped to the slightly overdoped regime. We find that the Fe magnetic moment is only moderately suppressed in most of the underdoped region where it decreases more slowly than the N{e}el-temperature, $ T^{mathrm{N}} $. This applies for both the total Fe moment obtained from muon spin rotation and for the itinerant component that is deduced from the spectral weight of the spin-density-wave pair breaking peak in the infrared response. In the moderately underdoped region, superconducting and static magnetic orders co-exist on the nano-scale and compete for the same electronic states. The static magnetic moment disappears rather sharply near optimal doping, however, in the slightly overdoped region there is still an enhancement or slowing down of spin fluctuations in the superconducting state. Similar to the gap magnitude reported from specific heat measurements, the superconducting condensate density is nearly constant in the optimally- and slightly overdoped region, but exhibits a rather pronounced decrease on the underdoped side. Several of these observations are similar to the phenomenology in the electron doped counterpart Ba(Fe$ _{1-y} $Co$ _{y} $)$ _{2} $As$ _{2} $.



قيم البحث

اقرأ أيضاً

We present our results of a local probe study on EuFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$ single crystals with $x$=0.13, 0.19 and 0.28 by means of muon spin rotation and ${}^{57}$Fe Mossbauer spectroscopy. We focus our discussion on the sample with $x$=0. 19 viz. at the optimal substitution level, where bulk superconductivity ($T_{text{SC}}=28$ K) sets in above static europium order ($T^{text{Eu}}=20$K) but well below the onset of the iron antiferromagnetic (AFM) transition ($sim$100 K). We find enhanced spin dynamics in the Fe sublattice closely above $T_{text{SC}}$ and propose that these are related to enhanced Eu fluctuations due to the evident coupling of both sublattices observed in our experiments.
404 - E. Sheveleva , B. Xu , P. Marsik 2020
The magnetic and superconducting properties of a series of underdoped $Ba_{1-x}Na_{x}Fe_{2}As_{2}$ (BNFA) single crystals with $0.19 leq xleq 0.34$ has been investigated with the complementary muon-spin-rotation ($mu$SR) and infrared spectroscopy tec hniques. The focus has been on the different antiferromagnetic states in the underdoped regime and their competition with superconductivity, especially for the ones with a tetragonal crystal structure and a so-called double-$Q$ magnetic order. Besides the collinear state with a spatially inhomogeneous spin-charge-density wave (i-SCDW) order at $x=0.24$ and $0.26$, that was previously identified in BNFA, we obtained evidence for an orthomagnetic state with a hedgehog-type spin vortex crystal (SVC) structure at $x=0.32$ and $0.34$. Whereas in the former i-SCDW state the infrared spectra show no sign of a superconducting response down to the lowest measured temperature of about 10K, in the SVC state there is a strong superconducting response similar to the one at optimum doping. The magnetic order is strongly suppressed here in the superconducting state and at $x=0.34$ there is even a partial re-entrance into a paramagnetic state at $T<<T_c$.
With muon spin rotation ($ mu $SR) we studied the transition between the orthorhombic antiferromagnetic (o-AF) and the tetragonal antiferromagnetic (t-AF) states of a weakly underdoped Ba$ _{1-x} $K$ _{x} $Fe$ _{2} $As$ _{2} $ single crystal. We obse rved some characteristic changes of the magnitude and the orientation of the magnetic field at the muon site which, due to the fairly high point symmetry of the latter, allow us to identify the magnetic structure of the t-AF state. It is the so-called, inhomogeneous double-$mathbf{Q}$ magnetic structure with $ c $-axis oriented moments which has a vanishing magnetic moment on half of the Fe sites.
166 - H. Suzuki , T. Yoshida , S. Ideta 2013
We have studied the electronic structure of Ba(Fe$_{1-x}$Mn$_{x}$)$_{2}$As$_{2}$ ($x$=0.08), which fails to become a superconductor in spite of the formal hole doping like Ba$_{1-x}$K$_{x}$Fe$_{2}$As$_{2}$, by photoemission spectroscopy and X-ray abs orption spectroscopy (XAS). With decreasing temperature, a transition from the paramagnetic phase to the antiferromagnetic phase was clearly observed by angle-resolved photoemission spectroscopy. XAS results indicated that the substituted Mn atoms form a strongly hybridized ground state. Resonance-photoemission spectra at the Mn $L_{3}$ edge revealed that the Mn 3d partial density of states is distributed over a wide energy range of 2-13 eV below the Fermi level ($E_F$), with little contribution around $E_F$. This indicates that the dopant Mn 3$d$ states are localized in spite of the strong Mn 3d-As $4p$ hybridization and split into the occupied and unoccupied parts due to the on-site Coulomb and exchange interaction. The absence of superconductivity in Ba(Fe$_{1-x}$Mn$_{x}$)$_{2}$As$_{2}$ can thus be ascribed both to the absence of carrier doping in the FeAs plane, and to the strong stabilizaiton of the antiferromagnetic order by the Mn impurities.
The in-plane London penetration depth, $Deltalambda(T)$, was measured using a tunnel diode resonator technique in single crystals of Ba$_{1-x}$K$_{x}$Fe$_{2}$As$_{2}$ with doping levels $x$ ranging from heavily underdoped, $x$=0.16 ($T_{c}$=7~K) to n early optimally doped, $x$= 0.34 ($T_{c}=$39 K). Exponential saturation of $Deltalambda(T)$ in the $Tto0$ limit is found in optimally doped samples, with the superfluid density $rho_{s}(T)equiv(lambda(0)/lambda(T))^{2}$ quantitatively described by a self-consistent $gamma$-model with two nodeless isotropic superconducting gaps. As the doping level is decreased towards the extreme end of the superconducting dome at $x$=0.16, the low-temperature behavior of $Deltalambda(T)$ becomes non-exponential and best described by the power-law $Deltalambda(T)propto T^{2}$, characteristic of strongly anisotropic gaps. The change between the two regimes happens within the range of coexisting magnetic/nematic order and superconductivity, $x<0.25$, and is accompanied by a rapid rise in the absolute value of $Deltalambda(T)$ with underdoping. This effect, characteristic of the competition between superconductivity and other ordered states, is very similar to but of significantly smaller magnitude than what is observed in the electron-doped Ba(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ compounds. Our study suggests that the competition between superconductivity and magnetic/nematic order in hole-doped compounds is weaker than in electron-doped compounds, and that the anisotropy of the superconducting state in the underdoped iron pnictides is a consequence of the anisotropic changes in the pairing interaction and in the gap function promoted by both magnetic and nematic long-range order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا