ترغب بنشر مسار تعليمي؟ اضغط هنا

Absence of Superconductivity in the hole-doped Fe pnictide Ba(Fe$_{1-x}$Mn$_{x}$)$_{2}$As$_{2}$: Photoemission and X-ray Absorption Spectroscopy Studies

155   0   0.0 ( 0 )
 نشر من قبل Hakuto Suzuki
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the electronic structure of Ba(Fe$_{1-x}$Mn$_{x}$)$_{2}$As$_{2}$ ($x$=0.08), which fails to become a superconductor in spite of the formal hole doping like Ba$_{1-x}$K$_{x}$Fe$_{2}$As$_{2}$, by photoemission spectroscopy and X-ray absorption spectroscopy (XAS). With decreasing temperature, a transition from the paramagnetic phase to the antiferromagnetic phase was clearly observed by angle-resolved photoemission spectroscopy. XAS results indicated that the substituted Mn atoms form a strongly hybridized ground state. Resonance-photoemission spectra at the Mn $L_{3}$ edge revealed that the Mn 3d partial density of states is distributed over a wide energy range of 2-13 eV below the Fermi level ($E_F$), with little contribution around $E_F$. This indicates that the dopant Mn 3$d$ states are localized in spite of the strong Mn 3d-As $4p$ hybridization and split into the occupied and unoccupied parts due to the on-site Coulomb and exchange interaction. The absence of superconductivity in Ba(Fe$_{1-x}$Mn$_{x}$)$_{2}$As$_{2}$ can thus be ascribed both to the absence of carrier doping in the FeAs plane, and to the strong stabilizaiton of the antiferromagnetic order by the Mn impurities.



قيم البحث

اقرأ أيضاً

We investigate magnetic ordering in metallic Ba[Fe(1-x)Mn(x)](2)As(2) and discuss the unusual magnetic phase, which was recently discovered for Mn concentrations x > 10%. We argue that it can be understood as a Griffiths-type phase that forms above t he quantum critical point associated with the suppression of the stripe-antiferromagnetic spin-density-wave (SDW) order in BaFe2As2 by the randomly introduced localized Mn moments acting as strong magnetic impurities. While the SDW transition at x = 0, 2.5% and 5% remains equally sharp, in the x = 12% sample we observe an abrupt smearing of the antiferromagnetic transition in temperature and a considerable suppression of the spin gap in the magnetic excitation spectrum. According to our muon-spin-relaxation, nuclear magnetic resonance and neutron-scattering data, antiferromagnetically ordered rare regions start forming in the x = 12% sample significantly above the Neel temperature of the parent compound. Upon cooling, their volume grows continuously, leading to an increase in the magnetic Bragg intensity and to the gradual opening of a partial spin gap in the magnetic excitation spectrum. Using neutron Larmor diffraction, we also demonstrate that the magnetically ordered volume is characterized by a finite orthorhombic distortion, which could not be resolved in previous diffraction studies most probably due to its coexistence with the tetragonal phase and a microstrain-induced broadening of the Bragg reflections. We argue that Ba[Fe(1-x)Mn(x)](2)As(2) could represent an interesting model spin-glass system, in which localized magnetic moments are randomly embedded into a SDW metal with Fermi surface nesting.
169 - H. Suzuki , K. Zhao , G. Shibata 2014
The electronic and magnetic properties of a new diluted magnetic semiconductor (DMS) Ba$_{1-x}$K$_{x}$(Zn$_{1-y}$Mn$_{y}$)$_{2}$As$_{2}$, which is isostructural to so-called 122-type Fe-based superconductors, are investigated by x-ray absorption spec troscopy (XAS) and resonance photoemission spectroscopy (RPES). Mn $L_{2,3}$-edge XAS indicates that the doped Mn atoms have the valence 2+ and strongly hybridize with the $4p$ orbitals of the tetrahedrally coordinating As ligands. The Mn $3d$ partial density of states (PDOS) obtained by RPES shows a peak around 4 eV and relatively high between 0-2 eV below the Fermi level ($E_{F}$) with little contribution at $E_{F}$, similar to that of the archetypal DMS Ga$_{1-x}$Mn$_{x}$As. This energy level creates $d^{5}$ electron configuration with $S=5/2$ local magnetic moments at the Mn atoms. Hole carriers induced by K substitution for Ba atoms go into the top of the As $4p$ valence band and are weakly bound to the Mn local spins. The ferromagnetic correlation between the local spins mediated by the hole carriers induces ferromagnetism in Ba$_{1-x}$K$_{x}$(Zn$_{1-y}$Mn$_{y}$)$_{2}$As$_{2}$
Using muon spin rotation and infrared spectroscopy we study the relation between magnetism and superconductivity in Ba$ _{1-x} $K$ _{x} $Fe$ _{2} $As$ _{2} $ single crystals from the underdoped to the slightly overdoped regime. We find that the Fe ma gnetic moment is only moderately suppressed in most of the underdoped region where it decreases more slowly than the N{e}el-temperature, $ T^{mathrm{N}} $. This applies for both the total Fe moment obtained from muon spin rotation and for the itinerant component that is deduced from the spectral weight of the spin-density-wave pair breaking peak in the infrared response. In the moderately underdoped region, superconducting and static magnetic orders co-exist on the nano-scale and compete for the same electronic states. The static magnetic moment disappears rather sharply near optimal doping, however, in the slightly overdoped region there is still an enhancement or slowing down of spin fluctuations in the superconducting state. Similar to the gap magnitude reported from specific heat measurements, the superconducting condensate density is nearly constant in the optimally- and slightly overdoped region, but exhibits a rather pronounced decrease on the underdoped side. Several of these observations are similar to the phenomenology in the electron doped counterpart Ba(Fe$ _{1-y} $Co$ _{y} $)$ _{2} $As$ _{2} $.
Here we present a combined study of the slightly underdoped novel pnictide superconductor Ba(1-x)K(x)Fe(2)As(2) by means of X-ray powder diffraction, neutron scattering, muon spin rotation (muSR), and magnetic force microscopy (MFM). Commensurate sta tic magnetic order sets in below Tm ~ 70 K as inferred from the emergence of the magnetic (1 0 -3) reflection in the neutron scattering data and from the observation of damped oscillations in the zero-field-muSR asymmetry. Transverse-field muSR below Tc shows a coexistence of magnetically ordered and non-magnetic states, which is also confirmed by MFM imaging. We explain such coexistence by electronic phase separation into antiferromagnetic and superconducting/normal state regions on a lateral scale of several tens of nanometers. Our findings indicate that such mesoscopic phase separation can be considered an intrinsic property of some iron pnictide superconductors.
Resistivity, Hall effect and magnetoresistance have been investigated systematically on single crystals of Ba$_{1-x}$K$_x$Fe$_2$As$_2$ ranging from undoped to optimally doped regions. A systematic evolution of the quasiparticle scattering has been ob served. It is found that the resistivity in the normal state of Ba$_{1-x}$K$_x$Fe$_2$As$_2$ is insensitive to the potassium doping concentration, which is very different from the electron doped counterpart Ba(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$, where the resistivity at 300 K reduces to half value of the undoped one when the system is optimally doped. In stark contrast, the Hall coefficient R$_H$ changes suddenly from a negative value in the undoped sample to a positive one with slight K-doping, and it keeps lowering with further doping. We interpret this dichotomy due to the asymmetric scattering rate in the hole and the electron pockets with much higher mobility of the latter. The magnetoresistivity shows also a non-monotonic doping dependence indicating an anomalous feature at about 80 K to 100 K, even in the optimally doped sample, which is associated with a possible pseudogap feature. In the low temperature region, it seems that the resistivity has the similar values when superconductivity sets in disregarding the different T$_c$ values, which indicates a novel mechanism of the superconductivity. A linear feature of resistivity $rho_{ab}$ vs. $T$ was observed just above $T_c$ for the optimally doped sample, suggesting a quantum criticality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا