ﻻ يوجد ملخص باللغة العربية
We study the quantum phase transition of the Dicke model in the classical oscillator limit, where it occurs already for finite spin length. In contrast to the classical spin limit, for which spin-oscillator entanglement diverges at the transition, entanglement in the classical oscillator limit remains small. We derive the quantum phase transition with identical critical behavior in the two classical limits and explain the differences with respect to quantum fluctuations around the mean-field ground state through an effective model for the oscillator degrees of freedom. With numerical data for the full quantum model we study convergence to the classical limits. We contrast the classical oscillator limit with the dual limit of a high frequency oscillator, where the spin degrees of freedom are described by the Lipkin-Meshkov-Glick model. An alternative limit can be defined for the Rabi case of spin length one-half, in which spin frequency renormalization replaces the quantum phase transition.
The quantum phase transition of the Dicke-model has been observed recently in a system formed by motional excitations of a laser-driven Bose--Einstein condensate coupled to an optical cavity [1]. The cavity-based system is intrinsically open: photons
We calculate numerically the fidelity and its susceptibility for the ground state of the Dicke model. A minimum in the fidelity identifies the critical value of the interaction where a quantum phase crossover, the precursor of a phase transition for
Physical systems close to a quantum phase transition exhibit a divergent susceptibility, suggesting that an arbitrarily-high precision may be achieved by exploiting quantum critical systems as probes to estimate a physical parameter. However, such an
We investigate quantum phase transitions, quantum criticality, and Berry phase for the ground state of an ensemble of non-interacting two-level atoms embedded in a non-linear optical medium, coupled to a single-mode quantized electromagnetic field. T
The Dicke model famously exhibits a phase transition to a superradiant phase with a macroscopic population of photons and is realized in multiple settings in open quantum systems. In this work, we study a variant of the Dicke model where the cavity m