ترغب بنشر مسار تعليمي؟ اضغط هنا

Broadband achromatic anomalous mirror in near-IR and visible frequency range

41   0   0.0 ( 0 )
 نشر من قبل Andrei Nemilentsau
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The anomalous achromatic mirror operating in near-IR and visible frequency range was designed using an array of metal-insulator-metal (MIM) resonators. An incident wave interacting with MIM resonator experiences phase shift that is equal to the optical path travelled by the gap plasmon, excited by the wave. The phase gradient along the mirror surface is created through the difference in plasmons optical paths in resonators of different lengths. In the frequency region well below the plasma frequency of the metal, the phase gradient is a linear function of frequency, and thus the mirror operates in achromatic regime, i.e. reflection angle does not depend on the radiation frequency. Using silver-air-silver resonators, we predicted that the mirror can steer normally incident beam to angles as large as 40$^{circ}$ with high radiation efficiency (exceeding 98 $%$) and small Joule losses (below 10 $%$).



قيم البحث

اقرأ أيضاً

113 - G. Jug , K. Ziegler 1998
The dynamical transport properties near the integer quantum Hall transition are investigated at zero temperature by means of the Dirac fermion approach. These properties have been studied experimentally at low frequency omega and low temperature near the nu=1 filling factor Hall transition, with the observation of an anusual broadening and an overall increase of the longitudinal conductivity Re sigma_{xx} as a function of omega. We find in our approach that, unlike for normal metals, the longitudinal conductivity increases as the frequency increases, whilst the width Delta B (or Delta nu) of the conductivity peak near the Hall transition increases. These findings are in reasonable quantitative agreement with recent experiments by Engel et al. as well as with recent numerical work by Avishai and Luck.
In addition to the well known chiral anomaly, Dirac semimetals have been argued to exhibit mirror anomaly, close analogue to the parity anomaly of ($2+1$)-dimensional massive Dirac fermions. The observable response of such anomaly is manifested in a singular step-like anomalous Hall response across the mirror-symmetric plane in the presence of a magnetic field. Although this result seems to be valid in type-II Dirac semimetals (strictly speaking, in the linearized theory), we find that type-I Dirac semimetals do not possess such an anomaly in anomalous Hall response even at the level of the linearized theory. In particular, we show that the anomalous Hall response continuously approaches zero as one approaches the mirror symmetric angle in a type-I Dirac semimetal as opposed to the singular Hall response in a type-II Dirac semimetal. Moreover, we show that, under certain condition, the anomalous Hall response may vanish in a linearized type-I Dirac semimetal, even in the presence of time reversal symmetry breaking.
We study structural and chemical transformations induced by focused laser beam in GaAs nanowires with axial zinc-blende/wurtzite (ZB/WZ) heterostucture. The experiments are performed using a combination of transmission electron microscopy, energy-dis persive X-ray spectroscopy, Raman scattering, and photoluminescence spectroscopy. For the both components of heterostructure, laser irradiation under atmospheric air is found to produce a double surface layer which is composed of crystalline arsenic and of amorphous GaO$_{x}$. The latter compound is responsible for appearance of a peak at 1.76 eV in photoluminescence spectra of GaAs nanowires. Under increased laser power density, due to sample heating, evaporation of the surface crystalline arsenic and formation of $beta$-Ga$_{2}$O$_{3}$ nanocrystals proceed on surface of the zinc-blende part of nanowire. The formed nanocrystals reveal a photoluminescence band in visible range of 1.7-2.4 eV. At the same power density for wurtzite part of the nanowire, total amorphization with formation of $beta$-Ga$_{2}$O$_{3}$ nanocrystals occurs. Observed transformation of WZ-GaAs to $beta$-Ga$_{2}$O$_{3}$ nanocrystals presents an available way for creation of axial and radial heterostuctures ZB-GaAs/$beta$-Ga$_{2}$O$_{3}$ for optoelectronic and photonic applications.
Two-terminal electronic transport systems with a rectangular transmission can violate standard thermodynamic uncertainty relations. This is possible beyond the linear response regime and for parameters that are not accessible with rate equations obey ing detailed-balance. Looser bounds originating from fluctuation theorem symmetries alone remain respected. We demonstrate that optimal finite-sized quantum dot chains can implement rectangular transmission functions with high accuracy and discuss the resulting violations of standard thermodynamic uncertainty relations as well as heat engine performance.
Metasurface optics provide an ultra-thin alternative to conventional refractive lenses. A present challenge is in realizing metasurfaces that exhibit tunable optical properties and achromatic behavior across the visible spectrum. Here, we report the design, fabrication, and characterization of metasurface lenses (metalenses) that use asymmetric TiO2 nanostructures to induce a polarization-dependent optical response. By rotating the polarization of linearly-polarized input light, the focal length of a 40 micrometer-diameter metalens is tuned from 220-550 micrometers with nearly diffraction-limited performance. We show that imparting a wavelength-dependent polarization rotation on incident light enables achromatic focusing over a wide band of the visible spectrum, 483-620 nm. We use this property to demonstrate varifocal color imaging with white light from a halogen source. Tunable achromatic metalenses may be useful for applications in imaging and display.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا