ﻻ يوجد ملخص باللغة العربية
Two-terminal electronic transport systems with a rectangular transmission can violate standard thermodynamic uncertainty relations. This is possible beyond the linear response regime and for parameters that are not accessible with rate equations obeying detailed-balance. Looser bounds originating from fluctuation theorem symmetries alone remain respected. We demonstrate that optimal finite-sized quantum dot chains can implement rectangular transmission functions with high accuracy and discuss the resulting violations of standard thermodynamic uncertainty relations as well as heat engine performance.
Converting information into work has during the last decade gained renewed interest as it gives insight into the relation between information theory and thermodynamics. Here we theoretically investigate an implementation of Maxwells demon in a double
We study the zero-temperature phase diagram of a dissipationless and disorder-free Josephson junction chain. Namely, we determine the critical Josephson energy below which the chain becomes insulating, as a function of the ratio of two capacitances:
Coherent two-level systems, or qubits, based on electron spins in GaAs quantum dots are strongly coupled to the nuclear spins of the host lattice via the hyperfine interaction. Realizing nuclear spin control would likely improve electron spin coheren
We investigate quantum fluctuations in the non-local resistance of an open quantum dot which is connected to four reservoirs via quantum point contacts. In this four-terminal quantum dot the voltage path can be separated from the current path. We mea
Many-body systems with multiple emergent time scales arise in various contexts, including classical critical systems, correlated quantum materials, and ultra-cold atoms. We investigate such non-trivial quantum dynamics in a new setting: a spin-1 bili