ﻻ يوجد ملخص باللغة العربية
We investigate genuine multipartite nonlocality of pure permutationally invariant multimode Gaussian states of continuous variable systems, as detected by the violation of Svetlichny inequality. We identify the phase space settings leading to the largest violation of the inequality when using displaced parity measurements, distinguishing our results between the cases of even and odd total number of modes. We further consider pseudospin measurements and show that, for three-mode states with asymptotically large squeezing degree, particular settings of these measurements allow one to approach the maximum violation of Svetlichny inequality allowed by quantum mechanics. This indicates that the strongest manifestation of genuine multipartite quantum nonlocality is in principle verifiable on Gaussian states.
We study the relations between quantum coherence and quantum nonlocality, genuine quantum entanglement and genuine quantum nonlocality. We show that the coherence of a qubit state can be converted to the nonlocality of two-qubit states via incoherent
We study the growth of genuine multipartite entanglement in random quantum circuit models, which include random unitary circuit models and the random Clifford circuit. We find that for the random Clifford circuit, the growth of multipartite entanglem
Recently, Halder emph{et al.} [S. Halder emph{et al.}, Phys. Rev. Lett. textbf{122}, 040403 (2019)] present two sets of strong nonlocality of orthogonal product states based on the local irreducibility. However, for a set of locally indistinguishable
Genuine multipartite entanglement has been found in some spin chain systems. However, genuine multipartite nonlocality, which is much rarer than genuine multipartite entanglement, has never been found in any spin chain system. Here we present genuine
The existence of non-local quantum correlations is certainly the most important specific property of the quantum world. However, it is a challenging task to distinguish correlations of classical origin from genuine quantum correlations, especially wh