ﻻ يوجد ملخص باللغة العربية
The muonic vacuum polarization contribution to the $g$-factor of the electron bound in a nuclear potential is investigated theoretically. The electric as well as the magnetic loop contributions are evaluated. We found these muonic effects to be observable in planned trapped-ion experiments with light and medium-heavy highly charged ions. The enhancement due to the strong Coulomb field boosts these contributions much above the corresponding terms in the free-electron $g$-factor. Due to their magnitude, muonic vacuum polarization terms are also significant in planned determinations of the fine-structure constant from the bound-electron $g$-factor.
The paper presents the current status of the theory of bound-electron g factor in highly charged ions. The calculations of the relativistic, QED, nuclear recoil, nuclear structure, and interelectronic-interaction corrections to the g factor are revie
The measurement of the 2P^{F=2}_{3/2} to 2S^{F=1}_{1/2} transition in muonic hydrogen by Pohl et al. and subsequent analysis has led to the conclusion that the rms radius of the proton differs from the accepted (CODATA) value by approximately 4%, cor
The theory of the g factor of an electron bound to a deformed nucleus is considered non-perturbatively and results are presented for a wide range of nuclei with charge numbers from Z=16 up to Z=98. We calculate the nuclear deformation correction to t
The recently established agreement between experiment and theory for the $g$ factors of lithiumlike silicon and calcium ions manifests the most stringent test of the many-electron bound-state quantum electrodynamics (QED) effects in the presence of a
Two-loop self-energy corrections to the bound-electron $g$ factor are investigated theoretically to all orders in the nuclear binding strength parameter $Zalpha$. The separation of divergences is performed by dimensional regularization, and the contr