ﻻ يوجد ملخص باللغة العربية
The measurement of the 2P^{F=2}_{3/2} to 2S^{F=1}_{1/2} transition in muonic hydrogen by Pohl et al. and subsequent analysis has led to the conclusion that the rms radius of the proton differs from the accepted (CODATA) value by approximately 4%, corresponding to a 4.9 sigma discrepancy. We investigate the finite-size effects - in particular the dependence on the shape of the proton electric form-factor - relevant to this transition using bound-state QED with nonperturbative, relativistic Dirac wave-functions for a wide range of idealised charge-distributions and a parameterization of experimental data in order to comment on the extent to which the perturbation-theory analysis which leads to the above conclusion can be confirmed. We find no statistically significant dependence of this correction on the shape of the proton form-factor.
We present a precise calculation of the Lamb shift $(2P_{1/2}-2S_{1/2})$ in muonic ions $(mu ^6_3Li)^{2+},~(mu ^7_3Li)^{2+}$, $(mu ^9_4Be)^{3+},~(mu ^{10}_4Be)^{3+}$, $(mu ^{10}_5B)^{4+},~(mu ^{11}_5B)^{4+}$. The contributions of orders $alpha^3dival
We consider corrections to the Lamb shift of p-wave atomic states due to the finite nuclear size (FNS). In other words, these are radiative corrections to the atomic isotop shift related to FNS. It is shown that the structure of the corrections is qu
We present new investigation of the Lamb shift (2P_{1/2}-2S_{1/2}) in muonic deuterium (mu d) atom using the three-dimensional quasipotential method in quantum electrodynamics. The vacuum polarization, nuclear structure and recoil effects are calcula
We investigate the influence of the spatial extent of the proton magnetization and charge densities on the 2S hyperfine splitting in muonic hydrogen. The use of a non-perturbative relativistic Dirac approach leads to corrections of 15% to values obta
The largest contributions to the $n=2$ Lamb-shift, fine structure interval and $2s$ hyperfine structure of muonic hydrogen are calculated by exact numerical evaluations of the Dirac equation, rather than by a perturbation expansion in powers of $1/c$