ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of the ferroelectric quantum critical point on SrTiO$_3$ interfaces

81   0   0.0 ( 0 )
 نشر من قبل William A. Atkinson
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a model SrTiO$_3$ interface in which conduction $t_{2g}$ electrons couple to the ferroelectric (FE) phonon mode. We treat the FE mode within a self-consistent phonon theory that captures its quantum critical behavior, and show that proximity to the quantum critical point leads to universal tails in the electron density of the form $n(z) sim (lambda+z)^{-2}$, where $lambda sim T^{2-d/mathfrak{z}}$, with $d=3$ the dimensionality and $mathfrak{z}=1$ the dynamical critical exponent. Implications for the metal-insulator transition at low electron density are discussed.



قيم البحث

اقرأ أيضاً

Quantum matter hosts a large variety of phases, some coexisting, some competing; when two or more orders occur together, they are often entangled and cannot be separated. Dynamical multiferroicity, where fluctuations of electric dipoles lead to magne tisation, is an example where the two orders are impossible to disentangle. Here we demonstrate elevated magnetic response of a ferroelectric near the ferroelectric quantum critical point (FE QCP) since magnetic fluctuations are entangled with ferroelectric fluctuations. We thus suggest that any ferroelectric quantum critical point is an textit{inherent} multiferroic quantum critical point. We calculate the magnetic susceptibility near the FE QCP and find a region with enhanced magnetic signatures that appears near the FE QCP, and controlled by the tuning parameter of the ferroelectric phase. The effect is small but observable - we propose quantum paraelectric strontium titanate as a candidate material where the magnitude of the induced magnetic moments can be $sim 5 times 10^{-7} mu_{B}$ per unit cell near the FE QCP.
Measurements of magneto-thermopower (S(H, T)) of interfacial delta doped LaTiO$_3$/SrTiO$_3$ (LTO/STO) heterostructure by an iso-structural antiferromagnetic perovskite LaCrO$_3$ are reported. The thermoelectric power of the pure LTO/STO interface at 300 K is $approx$ 118 $mu$V/K, but increases dramatically on $delta$-doping. The observed linear temperature dependence of S(T) over the temperature range 100 K to 300 K is in agreement with the theory of diffusion thermopower of a two-dimensional electron gas. The S(T) displays a distinct enhancement in the temperature range (T $<$ 100 K) where the sheet resistance shows a Kondo-type minimum. We attributed this maximum in S(T) to Kondo scattering of conduction electron by localized impurity spins at the interface. The suppression of S by a magnetic field, and the isotropic nature of the suppression in out-of-plane and in-plane field geometries further strengthen the Kondo model based interpretation of S(H, T).
100 - P. Chudzinski 2019
We explore a novel coupling mechanism of electrons with the transverse optical (TO) phonon branch in a regime when the TO mode becomes highly anharmonic and drives the ferroelectric phase transition. We show that this anharmonicity, which leads to a collective motion of ions, is able to couple electronic and lattice displacement fields. An effective correlated electron-ion dynamics method is required to capture the effect of the onset of the local electric polarization due to this collective behavior close to the quantum critical point. We identify an intermediate temperature range where an emergent phonon drag may contribute substantially to thermoelectric conductivity in this regime. We find that, under optimal conditions, this extra contribution may be larger than values achieved so far in the benchmark material, PbTe. In the last part we make a case for the importance of our results in the generic problem of anharmonic electron-lattice dynamics.
Amongst the rare-earth perovskite nickelates, LaNiO$_3$ (LNO) is an exception. While the former have insulating and antiferromagnetic ground states, LNO remains metallic and non-magnetic down to the lowest temperatures. It is believed that LNO is a s trange metal, on the verge of an antiferromagnetic instability. Our work suggests that LNO is a quantum critical metal, close to an antiferromagnetic quantum critical point (QCP). The QCP behavior in LNO is manifested in epitaxial thin films with unprecedented high purities. We find that the temperature and magnetic field dependences of the resistivity of LNO at low temperatures are consistent with scatterings of charge carriers from weak disorder and quantum fluctuations of an antiferromagnetic nature. Furthermore, we find that the introduction of a small concentration of magnetic impurities qualitatively changes the magnetotransport properties of LNO, resembling that found in some heavy-fermion Kondo lattice systems in the vicinity of an antiferromagnetic QCP.
The effect of a variety of intrinsic defects and defect clusters in bulk and thin films of SrTiO$_3$ on ferroelectric polarization and switching mechanism is investigated by means of density-functional-theory (DFT) based calculations and the Berry ph ase approach. Our results show that both the titanium Ti$_mathrm{Sr}^{bullet bullet}$ and strontium Sr$_mathrm{Ti}^{}$ antisite defects induce ferroelectric polarization in SrTiO$_3$, with the Ti$_mathrm{Sr}^{bullet bullet}$ defect causing a more pronounced spontaneous polarization and higher activation barriers of polarization reversal than Sr$_mathrm{Ti}^{}$. The presence of oxygen vacancies bound to the antisite defects can either enhance or diminish polarization depending on the configuration of the defect pair, but it always leads to larger activation barriers of polarization switching as compared to the antisite defects with no oxygen vacancies. We also show that the magnitude of spontaneous polarization in SrTiO$_3$ can be tuned by controlling the degree of Sr/Ti nonstroichiometry. Other intrinsic point defects such as Frenkel defect pairs and electron small polarons also contribute to the emergence of ferroelectric polarization in SrTiO$_{3}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا