ﻻ يوجد ملخص باللغة العربية
We obtain an analytic solution for accretion of a gaseous medium with a adiabatic equation of state ($P=rho$) onto a Reissner-Nordstr{o}m black hole which moves at a constant velocity through the medium. We obtain the specific expression for each component of the velocity and present the mass accretion rate which depends on the mass and the electric charge. The result we obtained may be helpful to understand the physical mechanism of accretion onto a moving black hole.
A deformed embedding of the Reissner-Nordstr{o}m spacetime is constructed within the framework of a noncommutative Riemannian geometry. We find noncommutative corrections to the usual Riemannian expressions for the metric and curvature tensors, which
Banerjee and Majhis recent work shows that black holes emission spectrum could be fully reproduced in the tunneling picture, where, as an intriguing technique, the Kruskal extension was introduced to connect the left and right modes inside and outsid
We investigate spherically symmetric, steady state, adiabatic accretion onto a Tangherlini-Reissner-Nordstrom black hole in arbitrary dimensions by using $D$-dimensional general relativity. We obtain basic equations for accretion and determine analyt
We present the analytical post-Newtonian solutions for the test particles motion in the Reissner-Nordstr{o}m spacetime. The solutions are formulated in the Wagoner-Will representation, the Epstein-Haugan representation, the Brumberg representation, a
We formulate and solve the problem of spherically symmetric, steady state, adiabatic accretion onto a Schwarzschild-like black hole obtained recently. We derive the general analytic expressions for the critical points, the critical velocity, the crit