ﻻ يوجد ملخص باللغة العربية
Banerjee and Majhis recent work shows that black holes emission spectrum could be fully reproduced in the tunneling picture, where, as an intriguing technique, the Kruskal extension was introduced to connect the left and right modes inside and outside the horizon. Some attempt, as an extension, was focused on producing the Hawking emission spectrum of the (charged) Reissner-Nordstr{o}m black hole in the Banerjee-Majhis treatment. Unfortunately, the Kruskal extension in their observation was so badly defined that the ingoing mode was classically forbidden traveling towards the center of black hole, but could quantum tunnel across the horizon with the probability $Gamma=e^{-pi omega_0/kappa_+}$. This tunneling picture is unphysical. With this point as a central motivation, in this paper we first introduce such a suitable Kruskal extension for the (charged) Reissner-Nordstr{o}m black hole that a perfect tunneling picture can be provided during the charged particles emission. Then, under the new Kruskal extension, we revisit the Hawking emission spectrum and entropy spectroscopy as tunneling from the charged black hole. The result shows that the tunneling method is so universally robust that the Hawking blackbody emission spectrum from a charged black hole can be well reproduced in the tunneling mechanism, and its induced entropy quantum is a much better approximation for the forthcoming quantum gravity theory.
A deformed embedding of the Reissner-Nordstr{o}m spacetime is constructed within the framework of a noncommutative Riemannian geometry. We find noncommutative corrections to the usual Riemannian expressions for the metric and curvature tensors, which
We obtain an analytic solution for accretion of a gaseous medium with a adiabatic equation of state ($P=rho$) onto a Reissner-Nordstr{o}m black hole which moves at a constant velocity through the medium. We obtain the specific expression for each com
We present the analytical post-Newtonian solutions for the test particles motion in the Reissner-Nordstr{o}m spacetime. The solutions are formulated in the Wagoner-Will representation, the Epstein-Haugan representation, the Brumberg representation, a
We study the interior of a Reissner-Nordstrom Black-Hole (RNBH) using Relativistic Quantum Geometry, which was introduced in some previous works. We found discrete energy levels for a scalar field from a polynomial condition for the Heun Confluent fu
For the Schwarzschild black hole the Bekenstein-Hawking entropy is proportional to the area of the event horizon. For the black holes with two horizons the thermodynamics is not very clear, since the role of the inner horizons is not well established