ﻻ يوجد ملخص باللغة العربية
Spin liquid is a state of electron spins in which quantum fluctuation breaks magnetic ordering while maintaining spin correlation. It has been a central topic in magnetism because of its relevance to high-Tc superconductivity and topological states. However, utilizing spin liquid has been quite difficult. Typical spin liquid states are realized in one-dimensional spin systems, called quantum spin chains. Here, we show that a spin liquid in a spin-1/2 quantum chain generates and carries spin current via its long-range spin fluctuation. This is demonstrated by observing an anisotropic negative spin Seebeck effect along the spin chains in Sr2CuO3. The results show that spin current can flow even in an atomic channel owing the spin liquid state, which can be used for atomic spin-current wiring.
This article is an introductory review of the physics of quantum spin liquid (QSL) states. Quantum magnetism is a rapidly evolving field, and recent developments reveal that the ground states and low-energy physics of frustrated spin systems may deve
Cs2CuCl4 is known to possess a quantum spin liquid phase with antiferromagnetic interaction below 2.8 K. We report the observation of a new metastable magnetic phase of the triangular frustrated quantum spin system Cs2CuCl4 induced by the application
When magnetic order is suppressed by frustrated interactions, spins form a highly correlated fluctuating spin liquid state down to low temperatures. Magnetic order of local moments can also be suppressed when they are fully screened by conduction ele
Quantum spin liquids have been at the forefront of correlated electron research ever since their original proposal in 1973, and the realization that they belong to the broader class of intrinsic topological orders, along with the fractional quantum H
We report a neutron scattering study of the spin-1/2 alternating bond antiferromagnet Cu(NO_3)_2. 2.5D_2O for 0.06<k_BT/J_1<1.5. For k_BT/J_1 << 1 the excitation spectrum is dominated by a coherent singlet-triplet mode centered at J_1=0.442(2) meV wi