ﻻ يوجد ملخص باللغة العربية
Quantum spin liquids have been at the forefront of correlated electron research ever since their original proposal in 1973, and the realization that they belong to the broader class of intrinsic topological orders, along with the fractional quantum Hall states. According to received wisdom, quantum spin liquids can arise in frustrated magnets with low spin $S$, where strong quantum fluctuations act to destabilize conventional, magnetically ordered states. Here we present a magnet that has a $Z_2$ quantum spin liquid ground state already in the semiclassical, large-$S$ limit. The state has both topological and symmetry related ground state degeneracy, and two types of gaps, a `magnetic flux gap that scales linearly with $S$ and an `electric charge gap that drops exponentially in $S$. The magnet is described by the spin-$S$ version of the spin-1/2 Kitaev honeycomb model, which has been the subject of intense studies in correlated electron systems with strong spin-orbit coupling, and in optical lattice realizations with ultracold atoms. The results apply to both integer and half-integer spins.
An external magnetic field can induce a transition in $alpha$-RuCl$_3$ from an ordered zigzag state to a disordered state that is possibly related to the Kitaev quantum spin liquid. Here we present new field dependent inelastic neutron scattering and
This article is an introductory review of the physics of quantum spin liquid (QSL) states. Quantum magnetism is a rapidly evolving field, and recent developments reveal that the ground states and low-energy physics of frustrated spin systems may deve
Spin liquid is a state of electron spins in which quantum fluctuation breaks magnetic ordering while maintaining spin correlation. It has been a central topic in magnetism because of its relevance to high-Tc superconductivity and topological states.
When magnetic order is suppressed by frustrated interactions, spins form a highly correlated fluctuating spin liquid state down to low temperatures. Magnetic order of local moments can also be suppressed when they are fully screened by conduction ele
We report a neutron scattering study of the spin-1/2 alternating bond antiferromagnet Cu(NO_3)_2. 2.5D_2O for 0.06<k_BT/J_1<1.5. For k_BT/J_1 << 1 the excitation spectrum is dominated by a coherent singlet-triplet mode centered at J_1=0.442(2) meV wi