ترغب بنشر مسار تعليمي؟ اضغط هنا

Transmitting more than 10 bit with a single photon

185   0   0.0 ( 0 )
 نشر من قبل Tristan Tentrup
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Encoding information in the position of single photons has no known limits, given infinite resources. Using a heralded single-photon source and a Spatial Light Modulator (SLM), we steer single photons to specific positions in a virtual grid on a large-area spatially resolving photon-counting detector (ICCD). We experimentally demonstrate selective addressing any location (symbol) in a 9072 size grid (alphabet) to achieve 10.5 bit of mutual information between the sender and receiver per detected photon. Our results set the stage for very-high-dimensional quantum information processing.



قيم البحث

اقرأ أيضاً

Schrodinger held that a local quantum system has some objectively real quantum state and no other (hidden) properties. He therefore took the Einstein-Podolsky-Rosen (EPR) phenomenon, which he generalized and called `steering, to require nonlocal wave function collapse. Because this would entail faster-than-light (FTL) information transmission, he doubted that it would be seen experimentally. Here we report a demonstration of EPR steering with entangled photon pairs that puts--in Schrodingers interpretation--a non-zero lower bound on the amount of FTL information transmission. We develop a family of $n$-setting loss-tolerant EPR-steering inequalities allowing for a size-$d$ classical message sent from Alices laboratory to Bobs. For the case $n=3$ and $d=2$ (one bit) we observe a statistically significant violation. Our experiment closes the efficiency and locality loopholes, and we address the freedom-of-choice loophole by using quantum random number generators to independently choose Alices and Bobs measurement basis settings. To close the efficiency and locality loopholes simultaneously, we introduce methods for quickly switching between three mutually unbiased measurement bases and for accurately characterizing the efficiency of detectors. From the space-time arrangement of our experiment, we can conclude that if the mechanism for the observed bipartite correlations is that Alices measurement induces wave-function collapse of Bobs particle, then more than one bit of information must travel from Alice to Bob at more than three times the speed of light.
Physical processes thatobtain, process, and erase information involve tradeoffs between information and energy. The fundamental energetic value of a bit of information exchanged with a reservoir at temperature T is kT ln2. This paper investigates the situation in which information is missing about just what physical process is about to take place. The fundamental energetic value of such information can be far greater than kT ln2 per bit.
We consider two separate atoms interacting with a single-mode optical resonator. When the frequency of the resonator field is twice the atomic transition frequency, we show that there exists a resonant coupling between textit{one} photon and textit{t wo} atoms, via intermediate virtual states connected by counter-rotating processes. If the resonator is prepared in its one-photon state, the photon can be jointly absorbed by the two atoms in their ground state which will both reach their excited state with probability close to one. Like ordinary quantum Rabi oscillations, this process is coherent and reversible, so that two atoms in their excited state will undergo a downward transition jointly emitting a single cavity photon. This joint absorption and emission processes can also occur with three atoms. The parameters used to investigate this process correspond to experimentally demonstrated values in circuit quantum electrodynamics systems.
We present the first demonstration of an integrated photonic phase-change memory using GeSbTe-225 on silicon-on-insulator and demonstrate reliable multilevel operation with a single programming pulse. We also compare our results on silicon with previ ous demonstrations on silicon nitride. Crucially, achieving this on silicon enables tighter integration of traditional electronics with photonic memories in future, making phase-change photonic memory a viable and integrable technology.
55 - K.J. Resch , J.S. Lundeen , 2001
We demonstrate suppression and enhancement of spontaneous parametric down- conversion via quantum interference with two weak fields from a local oscillator (LO). Pairs of LO photons are observed to upconvert with high efficiency for appropriate phase settings, exhibiting an effective nonlinearity enhanced by at least 10 orders of magnitude. This constitutes a two-photon switch, and promises to be useful for a variety of nonlinear optical effects at the quantum level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا