ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance study of Lagrangian methods: reconstruction of large scale peculiar velocities and baryonic acoustic oscillations

91   0   0.0 ( 0 )
 نشر من قبل Ariel Keselman
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

NoAM for No Action Method is a framework for reconstructing the past orbits of observed tracers of the large scale mass density field. It seeks exact solutions of the equations of motion (EoM), satisfying initial homogeneity and the final observed particle (tracer) positions. The solutions are found iteratively reaching a specified tolerance defined as the RMS of the distance between reconstructed and observed positions. Starting from a guess for the initial conditions, NoAM advances particles using standard N-body techniques for solving the EoM. Alternatively, the EoM can be replaced by any approximation such as Zeldovich and second order perturbation theory (2LPT). NoAM is suitable for billions of particles and can easily handle non-regular volumes, redshift space, and other constraints. We implement NoAM to systematically compare Zeldovich, 2LPT, and N-body dynamics over diverse configurations ranging from idealized high-res periodic simulation box to realistic galaxy mocks. Our findings are (i) Non-linear reconstructions with Zeldovich, 2LPT, and full dynamics perform better than linear theory only for idealized catalogs in real space. For realistic catalogs, linear theory is the optimal choice for reconstructing velocity fields smoothed on scales > 5 Mpc/h. (ii) all non-linear back-in-time reconstructions tested here, produce comparable enhancement of the baryonic oscillation signal in the correlation function.



قيم البحث

اقرأ أيضاً

215 - Rennan Barkana 2010
Baryonic acoustic oscillations (BAOs) modulate the density ratio of baryons to dark matter across large regions of the Universe. We show that the associated variation in the mass-to-light ratio of galaxies should generate an oscillatory, scale-depend ent bias of galaxies relative to the underlying distribution of dark matter. A measurement of this effect would calibrate the dependence of the characteristic mass-to-light ratio of galaxies on the baryon mass fraction in their large scale environment. This bias, though, is unlikely to significantly affect measurements of BAO peak positions.
It is known that the large-scale structure (LSS) mapped by a galaxy redshift survey is subject to distortions by the galaxies peculiar velocities. Besides the signatures generated in common N-point statistics, such as the anisotropy in the galaxy 2-p t correlation function, the peculiar velocities also induce distinct features in LSSs morphological properties, which are fully described by four Minkowski functionals (MFs), i.e., the volume, surface area, mean curvature and Euler characteristic (or genus). In this work, by using large suite of N-body simulations, we present and analyze these important features in the MFs of LSS on both (quasi-)linear and non-linear scales. With a focus on non-linear scale, we identify the features uniquely induced by the fingers-of-God effect that show up only on non-linear scales, especially in the surface-area weighted mean curvature in high density threshold regions. We also find the MFs may give competitive constraints on cosmological parameters compared to the power spectrum. These results are important for cosmological applications of MFs of LSS, and probablly open up a new way to study the peculiar velocity field itself.
We examine the correlation function xi of the Sloan Digital Sky Survey (SDSS) Luminous Red Galaxy sample (LRG) at large scales (60<s<400 Mpc/h) using the final data release (DR7; 105,831 LRGs between 0.16<z<0.47). Using mock catalogs, we demonstrate that the observed baryonic acoustic peak and larger scale signal are consistent with LCDM at the 1.5sigma level. The signal at 155<s<200 Mpc/h tends to be high relative to theoretical expectations; this slight deviation can be attributed to a bright subsample of the LRGs. Fitting data to a non-linear, redshift-space, template based-model, we constrain the peak position at s_p=103.6+3.6-2.4 Mpc/h when fitting the range 60<s<150 Mpc/h (1sigma uncertainties measured from the mocks. This redshift-space distance s_p is related to the comoving sound horizon scale r_s after taking into account matter clustering non-linearities, redshift distortions and galaxy clustering bias. Mock catalogs show that the probability that a DR7-sized sample would not have an identifiable peak is at least 10%. As a consistency check of a fiducial cosmology, we use the observed s_p to obtain the distance D_V=[(1+z)^2D_A^2cz/H(z)]^(1/3) relative to the acoustic scale. We find r_s/D_V(z=0.278)=0.1394+-0.0049. This result is in excellent agreement with Percival et. al (2009), who examine roughly the same data set, but using the power spectrum. Comparison with other determinations in the literature are also in very good agreement. We have tested our results against a battery of possible systematic effects, finding all effects are smaller than our estimated sample variance.
Gravitational non-linear evolution induces a shift in the position of the baryon acoustic oscillations (BAO) peak together with a damping and broadening of its shape that bias and degrades the accuracy with which the position of the peak can be deter mined. BAO reconstruction is a technique developed to undo part of the effect of non-linearities. We present and analyse a reconstruction method that consists of displacing pixels instead of galaxies and whose implementation is easier than the standard reconstruction method. We show that this method is equivalent to the standard reconstruction technique in the limit where the number of pixels becomes very large. This method is particularly useful in surveys where individual galaxies are not resolved, as in 21cm intensity mapping observations. We validate this method by reconstructing mock pixelated maps, that we build from the distribution of matter and halos in real- and redshift-space, from a large set of numerical simulations. We find that this method is able to decrease the uncertainty in the BAO peak position by 30-50% over the typical angular resolution scales of 21 cm intensity mapping experiments.
We show that it is possible to build effective matter density power spectra in tomographic cosmic shear observations that exhibit the Baryonic Acoustic Oscillations (BAO) features once a nulling transformation has been applied to the data. The precis ion with which the amplitude and position of these features can be reconstructed is quantified in terms of sky coverage, intrinsic shape noise, median source redshift and number density of sources. BAO detection in Euclid or LSST like wide surveys will be possible with a modest signal-to-noise ratio. It would improve dramatically for slightly deeper surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا