ﻻ يوجد ملخص باللغة العربية
We show that it is possible to build effective matter density power spectra in tomographic cosmic shear observations that exhibit the Baryonic Acoustic Oscillations (BAO) features once a nulling transformation has been applied to the data. The precision with which the amplitude and position of these features can be reconstructed is quantified in terms of sky coverage, intrinsic shape noise, median source redshift and number density of sources. BAO detection in Euclid or LSST like wide surveys will be possible with a modest signal-to-noise ratio. It would improve dramatically for slightly deeper surveys.
We assess the detectability of baryonic acoustic oscillations (BAO) in the power spectrum of galaxies using ultra large volume N-body simulations of the hierarchical clustering of dark matter and semi-analytical modelling of galaxy formation. A step-
While baryonic feedback is one of the most important astrophysical systematics that we need to address in order to achieve precision cosmology, few weak lensing studies have directly measured its impact on the matter power spectrum. We report measure
Baryonic acoustic oscillations (BAOs) modulate the density ratio of baryons to dark matter across large regions of the Universe. We show that the associated variation in the mass-to-light ratio of galaxies should generate an oscillatory, scale-depend
We present a semi-analytic model for the shear two-point correlation function of a cosmic shear survey with non-uniform depth. Ground-based surveys are subject to depth variations that primarily arise through varying atmospheric conditions. For a sur
We show that the lensing efficiency of cosmic shear generically has a simple shape, even in the case of a tomographic survey with badly behaved photometric redshifts. We argue that source distributions for cosmic shear can therefore be more effective