ﻻ يوجد ملخص باللغة العربية
The dissipation generated during a quasistatic thermodynamic process can be characterised by introducing a metric on the space of Gibbs states, in such a way that minimally-dissipating protocols correspond to geodesic trajectories. Here, we show how to generalize this approach to open quantum systems by finding the thermodynamic metric associated to a given Lindblad master equation. The obtained metric can be understood as a perturbation over the background geometry of equilibrium Gibbs states, which is induced by the Kubo-Mori-Bogoliubov (KMB) inner product. We illustrate this construction on two paradigmatic examples: an Ising chain and a two-level system interacting with a bosonic bath with different spectral densities.
The variational method is very important in mathematical and theoretical physics because it allows us to describe the natural systems by physical quantities independently from the frame of reference used. A global and statistical approach have been i
The resource theory of thermal operations, an established model for small-scale thermodynamics, provides an extension of equilibrium thermodynamics to nonequilibrium situations. On a lattice of any dimension with any translation-invariant local Hamil
Irreversibility is a fundamental concept with important implications at many levels. It pinpoints the fundamental difference between the intrinsically reversible microscopic equations of motion and the unidirectional arrow of time that emerges at the
We derive a general scheme to obtain quantum fluctuation relations for dynamical observables in open quantum systems. For concreteness we consider Markovian non-unitary dynamics that is unraveled in terms of quantum jump trajectories, and exploit tec
If an open quantum system is initially uncorrelated from its environment, then its dynamics can be written in terms of a Lindblad-form master equation. The master equation is divided into a unitary piece, represented by an effective Hamiltonian, and