ﻻ يوجد ملخص باللغة العربية
Following a recent proposal by Cooper and Zwanziger we investigate via $SU(2)$ lattice simulations the effect on the Coulomb gauge propagators and on the Gribov-Zwanziger confinement mechanism of selecting the Gribov copy with the smallest non-trivial eigenvalue of the Faddeev-Popov operator, i.e.~the one closest to the Gribov horizon. Although such choice of gauge drives the ghost propagator towards the prediction of continuum calculations, we find that it actually overshoots the goal. With increasing computer time, we observe that Gribov copies with arbitrarily small eigenvalues can be found. For such a method to work one would therefore need further restrictions on the gauge condition to isolate the physically relevant copies, since e.g.~the Coulomb potential $V_C$ defined through the Faddeev-Popov operator becomes otherwise physically meaningless. Interestingly, the Coulomb potential alternatively defined through temporal link correlators is only marginally affected by the smallness of the eigenvalues.
Lattice results for the gluon propagator in SU(2) pure gauge theory obtained on large lattices are presented. Simulated annealing is used throughout to fix the Landau gauge. We concentrate on checks for Gribov copy effects and for scaling properties.
We study the problem of the Landau gauge fixing in the case of the SU(2) lattice gauge theory. We show that the probability to find a lattice Gribov copy increases considerably when the physical size of the lattice exceeds some critical value $approx
Complex monopole solutions exist in the three dimensional Georgi-Glashow model with the Chern-Simons term. They dominate the path integral and disorder the Higgs vacuum. Gribov copies of the vacuum and monopole configurations are studied in detail.
We study the Gribov problem in four-dimensional topological Yang-Mills theories following the Baulieu-Singer approach in the (anti-)self-dual Landau gauges. This is a gauge-fixed approach that allows to recover the topological spectrum, as first cons
We prove a lower bound for the smallest nonzero eigenvalue of the Landau-gauge Faddeev-Popov matrix in Yang-Mills theories. The bound is written in terms of the smallest nonzero momentum on the lattice and of a parameter characterizing the geometry o