ﻻ يوجد ملخص باللغة العربية
We prove a lower bound for the smallest nonzero eigenvalue of the Landau-gauge Faddeev-Popov matrix in Yang-Mills theories. The bound is written in terms of the smallest nonzero momentum on the lattice and of a parameter characterizing the geometry of the first Gribov region. This allows a simple and intuitive description of the infinite-volume limit in the ghost sector. In particular, we show how nonperturbative effects may be quantified by the rate at which typical thermalized and gauge-fixed configurations approach the Gribov horizon. Our analytic results are verified numerically in the SU(2) case through an informal, free and easy, approach. This analysis provides the first concrete explanation of why the so-called scaling solution of the Dyson-Schwinger equations is not observed in lattice studies.
Following a recent proposal by Cooper and Zwanziger we investigate via $SU(2)$ lattice simulations the effect on the Coulomb gauge propagators and on the Gribov-Zwanziger confinement mechanism of selecting the Gribov copy with the smallest non-trivia
The Kugo-Ojima color confinement criterion, which is based on the BRST symmetry of the continuum QCD is numerically tested by the lattice Landau gauge simulation. We first discuss the Gribov copy problem and the BRST symmetry on the lattice. The latt
Lattice results for the gluon propagator in SU(2) pure gauge theory obtained on large lattices are presented. Simulated annealing is used throughout to fix the Landau gauge. We concentrate on checks for Gribov copy effects and for scaling properties.
By means of Numerical Stochastic Perturbation Theory (NSPT), we calculate the lattice gluon propagator up to three loops of perturbation theory in the limits of infinite volume and vanishing lattice spacing. Based on known anomalous dimensions and a
Lattice gluon propagators are studied using tadpole and Symanzik improved gauge action in Landau gauge. The study is performed using anisotropic lattices with asymmetric volumes. The Landau gauge dressing function for the gluon propagator measured on