ﻻ يوجد ملخص باللغة العربية
We study diffusion-controlled single-species annihilation with sparse initial conditions. In this random process, particles undergo Brownian motion, and when two particles meet, both disappear. We focus on sparse initial conditions where particles occupy a subspace of dimension $delta$ that is embedded in a larger space of dimension $d$. We find that the co-dimension $Delta=d-delta$ governs the behavior. All particles disappear when the co-dimension is sufficiently small, $Deltaleq 2$; otherwise, a finite fraction of particles indefinitely survive. We establish the asymptotic behavior of the probability $S(t)$ that a test particle survives until time $t$. When the subspace is a line, $delta=1$, we find inverse logarithmic decay, $Ssim (ln t)^{-1}$, in three dimensions, and a modified power-law decay, $Ssim (ln t),t^{-1/2}$, in two dimensions. In general, the survival probability decays algebraically when $Delta <2$, and there is an inverse logarithmic decay at the critical co-dimension $Delta=2$.
We study diffusion-controlled single-species annihilation with a finite number of particles. In this reaction-diffusion process, each particle undergoes ordinary diffusion, and when two particles meet, they annihilate. We focus on spatial dimensions
We present a new theoretical framework for Diffusion Limited Aggregation and associated Dielectric Breakdown Models in two dimensions. Key steps are understanding how these models interrelate when the ultra-violet cut-off strategy is changed, the ana
We expand upon a new theoretical framework for Diffusion Limited Aggregation and associated Dielectric Breakdown Models in two dimensions [R. C. Ball and E. Somfai, Phys. Rev. Lett. 89, 135503 (2002)]. Key steps are understanding how these models int
Reaction-diffusion models have been used over decades to study biological systems. In this context, evolution equations for probability distribution functions and the associated stochastic differential equations have nowadays become indispensable too
In an ensemble of non-interacting Brownian particles, a finite systematic average velocity may temporarily develop, even if it is zero initially. The effect originates from a small nonlinear correction to the dissipative force, causing the equation f