ﻻ يوجد ملخص باللغة العربية
Reaction-diffusion models have been used over decades to study biological systems. In this context, evolution equations for probability distribution functions and the associated stochastic differential equations have nowadays become indispensable tools. In population dynamics, say, such approaches are utilized to study many systems, e.g., colonies of microorganisms or ecological systems. While the majority of studies focus on the case of a static domain, the time-dependent case is also important, as it allows one to deal with situations where the domain growth takes place over time scales that are relevant for the computation of reaction rates and of the associated reactant distributions. Such situations are indeed frequently encountered in the field of developmental biology, notably in connection with pattern formation, embryo growth or morphogen gradient formation. In this chapter, we review some recent advances in the study of pure diffusion processes in growing domains. These results are subsequently taken as a starting point to study the kinetics of a simple reaction-diffusion process, i.e., the encounter-controlled annihilation reaction. The outcome of the present work is expected to pave the way for the study of more complex reaction-diffusion systems of possible relevance in various fields of research.
Reaction-diffusion equations are widely used as the governing evolution equations for modeling many physical, chemical, and biological processes. Here we derive reaction-diffusion equations to model transport with reactions on a one-dimensional domai
The cell cytoskeleton is a striking example of active medium driven out-of-equilibrium by ATP hydrolysis. Such activity has been shown recently to have a spectacular impact on the mechanical and rheological properties of the cellular medium, as well
We generalize the reaction-diffusion model A + B -> 0 in order to study the impact of an excess of A (or B) at the reaction front. We provide an exact solution of the model, which shows that linear response breaks down: the average displacement of th
Diffusion at solid-liquid interfaces is crucial in many technological and biophysical processes. Although its behavior seems deceivingly simple, recent studies showing passive superdiffusive transport suggest diffusion on surfaces may hide rich compl
We study diffusion-controlled single-species annihilation with sparse initial conditions. In this random process, particles undergo Brownian motion, and when two particles meet, both disappear. We focus on sparse initial conditions where particles oc