ﻻ يوجد ملخص باللغة العربية
We present an updated constrained hyperbolic/parabolic divergence cleaning algorithm for smoothed particle magnetohydrodynamics (SPMHD) that remains conservative with wave cleaning speeds which vary in space and time. This is accomplished by evolving the quantity $psi / c_h$ instead of $psi$. Doing so allows each particle to carry an individual wave cleaning speed, $c_h$, that can evolve in time without needing an explicit prescription for how it should evolve, preventing circumstances which we demonstrate could lead to runaway energy growth related to variable wave cleaning speeds. This modification requires only a minor adjustment to the cleaning equations and is trivial to adopt in existing codes. Finally, we demonstrate that our constrained hyperbolic/parabolic divergence cleaning algorithm, run for a large number of iterations, can reduce the divergence of the field to an arbitrarily small value, achieving $ abla cdot B=0$ to machine precision.
Numerical methods to improve the treatment of magnetic fields in smoothed field magnetohydrodynamics (SPMHD) are developed and tested. Chapter 2 is a review of SPMHD. In Chapter 3, a mixed hyperbolic/parabolic scheme is developed which cleans diverge
Artificial resistivity is included in Smoothed Particle Magnetohydrodynamics simulations to capture shocks and discontinuities in the magnetic field. Here we present a new method for adapting the strength of the applied resistivity so that shocks are
In magnetohydrodynamics (MHD), the magnetic field is evolved by the induction equation and coupled to the gas dynamics by the Lorentz force. We perform numerical smoothed particle magnetohydrodynamics (Spmhd) simulations and study the influence of a
We present Phantom, a fast, parallel, modular and low-memory smoothed particle hydrodynamics and magnetohydrodynamics code developed over the last decade for astrophysical applications in three dimensions. The code has been developed with a focus on
Supersonic turbulence is believed to be at the heart of star formation. We have performed smoothed particle magnetohydrodynamics (SPMHD) simulations of the small-scale dynamo amplification of magnetic fields in supersonic turbulence. The calculations