ﻻ يوجد ملخص باللغة العربية
We present an apparatus that converts every pulse of a pulsed light source to a pulse train in which the intensities of the different pulses are samples of the spatial or temporal frequency spectrum of the original pulse. In this way, the spectrum of the incident light can be measured by following the temporal response of a single detector. The apparatus is based on multiple round-trips inside a 2f- cavity-like mirror arrangement in which the spectrum is spread on the back focal plane, where after each round-trip a small section of the spectrum is allowed to escape. The apparatus is fibre-free, offers easy wavelength range tunability, and a prototype built achieves over 10% average efficiency in the near infra red. We demonstrate the application of the prototype for the efficient measurement of the joint spectrum of a non-degenerate bi-photon source in which one of the photons is in the near infra red.
Spectral dispersion of ultrashort pulses allows simultaneous focusing of light in both space and time creating so-called spatio-temporal foci. Such space-time coupling may be combined with existing holographic techniques to give a further dimension o
We demonstrate the ability to control and shape the spectro-temporal content of extreme-ultraviolet (XUV) pulses produced by a seeded free-electron laser (FEL). The control over the spectro-temporal properties of XUV light was achieved by precisely m
Light emitted from a source into a scene can undergo complex interactions with scene surfaces of different material types before being reflected. During this transport, every surface reflection is encoded in the properties of the photons that reach t
The shortest light pulses produced to date are of the order of a few tens of attoseconds, with central frequencies in the extreme ultraviolet range and bandwidths exceeding tens of eV. They are often produced as a train of pulses separated by half th
Long-range speckle correlations play an essential role in wave transport through disordered media, but have rarely been studied in other complex systems. Here we discover spatio-temporal intensity correlations for an optical pulse propagating through