ﻻ يوجد ملخص باللغة العربية
Light emitted from a source into a scene can undergo complex interactions with scene surfaces of different material types before being reflected. During this transport, every surface reflection is encoded in the properties of the photons that reach the detector, including time, direction, intensity, wavelength and polarization. Conventional imaging systems capture intensity by integrating over all other dimensions of the light, hiding this rich scene information. Existing methods are capable of untangling these measurements into their spatial and temporal dimensions, fueling geometric scene understanding tasks. However, examining material properties jointly with geometric properties is an open challenge that could enable unprecedented capabilities beyond geometric scene understanding, allowing for material-dependent scene understanding and imaging through complex transport. In this work, we close this gap, and propose a computational light transport imaging method that captures the spatially- and temporally-resolved complete polarimetric response of a scene. Our method hinges on a 7D tensor theory of light transport. We discover low-rank structure in the polarimetric tensor dimension and propose a data-driven rotating ellipsometry method that learns to exploit redundancy of polarimetric structure. We instantiate our theory with two prototypes: spatio-polarimetric imaging and coaxial temporal-polarimetric imaging. This allows us, for the first time, to decompose scene light transport into temporal, spatial, and complete polarimetric dimensions that unveil scene properties hidden to conventional methods. We validate the applicability of our method on diverse tasks, including shape reconstruction with subsurface scattering, seeing through scattering media, untangling multi-bounce light transport, breaking metamerism, and decomposition of crystals.
The attribution method provides a direction for interpreting opaque neural networks in a visual way by identifying and visualizing the input regions/pixels that dominate the output of a network. Regarding the attribution method for visually explainin
With only bounding-box annotations in the spatial domain, existing video scene text detection (VSTD) benchmarks lack temporal relation of text instances among video frames, which hinders the development of video text-related applications. In this pap
We present an apparatus that converts every pulse of a pulsed light source to a pulse train in which the intensities of the different pulses are samples of the spatial or temporal frequency spectrum of the original pulse. In this way, the spectrum of
In this work, we aim to segment and detect water in videos. Water detection is beneficial for appllications such as video search, outdoor surveillance, and systems such as unmanned ground vehicles and unmanned aerial vehicles. The specific problem, h
Large-area crop classification using multi-spectral imagery is a widely studied problem for several decades and is generally addressed using classical Random Forest classifier. Recently, deep convolutional neural networks (DCNN) have been proposed. H