ترغب بنشر مسار تعليمي؟ اضغط هنا

A Speaker Diarization System for Studying Peer-Led Team Learning Groups

62   0   0.0 ( 0 )
 نشر من قبل Harishchandra Dubey
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Peer-led team learning (PLTL) is a model for teaching STEM courses where small student groups meet periodically to collaboratively discuss coursework. Automatic analysis of PLTL sessions would help education researchers to get insight into how learning outcomes are impacted by individual participation, group behavior, team dynamics, etc.. Towards this, speech and language technology can help, and speaker diarization technology will lay the foundation for analysis. In this study, a new corpus is established called CRSS-PLTL, that contains speech data from 5 PLTL teams over a semester (10 sessions per team with 5-to-8 participants in each team). In CRSS-PLTL, every participant wears a LENA device (portable audio recorder) that provides multiple audio recordings of the event. Our proposed solution is unsupervised and contains a new online speaker change detection algorithm, termed G 3 algorithm in conjunction with Hausdorff-distance based clustering to provide improved detection accuracy. Additionally, we also exploit cross channel information to refine our diarization hypothesis. The proposed system provides good improvements in diarization error rate (DER) over the baseline LIUM system. We also present higher level analysis such as the number of conversational turns taken in a session, and speaking-time duration (participation) for each speaker.



قيم البحث

اقرأ أيضاً

Peer-Led Team Learning (PLTL) is a learning methodology where a peer-leader co-ordinate a small-group of students to collaboratively solve technical problems. PLTL have been adopted for various science, engineering, technology and maths courses in se veral US universities. This paper proposed and evaluated a speech system for behavioral analysis of PLTL groups. It could help in identifying the best practices for PLTL. The CRSS-PLTL corpus was used for evaluation of developed algorithms. In this paper, we developed a robust speech activity detection (SAD) by fusing the outputs of a DNN-based pitch extractor and an unsupervised SAD based on voicing measures. Robust speaker diarization system consisted of bottleneck features (from stacked autoencoder) and informed HMM-based joint segmentation and clustering system. Behavioral characteristics such as participation, dominance, emphasis, curiosity and engagement were extracted by acoustic analyses of speech segments belonging to all students. We proposed a novel method for detecting question inflection and performed equal error rate analysis on PLTL corpus. In addition, a robust approach for detecting emphasized speech regions was also proposed. Further, we performed exploratory data analysis for understanding the distortion present in CRSS-PLTL corpus as it was collected in naturalistic scenario. The ground-truth Likert scale ratings were used for capturing the team dynamics in terms of students responses to a variety of evaluation questions. Results suggested the applicability of proposed system for behavioral analysis of small-group conversations such as PLTL, work-place meetings etc.. Keywords- Behavioral Speech Processing, Bottleneck Features, Curiosity, Deep Neural Network, Dominance, Auto-encoder, Emphasis, Engagement, Peer-Led Team Learning, Speaker Diarization, Small-group Conversations
94 - Keke Wang , Xudong Mao , Hao Wu 2021
This paper describes the ByteDance speaker diarization system for the fourth track of the VoxCeleb Speaker Recognition Challenge 2021 (VoxSRC-21). The VoxSRC-21 provides both the dev set and test set of VoxConverse for use in validation and a standal one test set for evaluation. We first collect the duration and signal-to-noise ratio (SNR) of all audio and find that the distribution of the VoxConverses test set and the VoxSRC-21s test set is more closer. Our system consists of voice active detection (VAD), speaker embedding extraction, spectral clustering followed by a re-clustering step based on agglomerative hierarchical clustering (AHC) and overlapped speech detection and handling. Finally, we integrate systems with different time scales using DOVER-Lap. Our best system achieves 5.15% of the diarization error rate (DER) on evaluation set, ranking the second at the diarization track of the challenge.
In this paper we describe a speaker diarization system that enables localization and identification of all speakers present in a conversation or meeting. We propose a novel systematic approach to tackle several long-standing challenges in speaker dia rization tasks: (1) to segment and separate overlapping speech from two speakers; (2) to estimate the number of speakers when participants may enter or leave the conversation at any time; (3) to provide accurate speaker identification on short text-independent utterances; (4) to track down speakers movement during the conversation; (5) to detect speaker change incidence real-time. First, a differential directional microphone array-based approach is exploited to capture the target speakers voice in far-field adverse environment. Second, an online speaker-location joint clustering approach is proposed to keep track of speaker location. Third, an instant speaker number detector is developed to trigger the mechanism that separates overlapped speech. The results suggest that our system effectively incorporates spatial information and achieves significant gains.
In this paper we propose a new method of speaker diarization that employs a deep learning architecture to learn speaker embeddings. In contrast to the traditional approaches that build their speaker embeddings using manually hand-crafted spectral fea tures, we propose to train for this purpose a recurrent convolutional neural network applied directly on magnitude spectrograms. To compare our approach with the state of the art, we collect and release for the public an additional dataset of over 6 hours of fully annotated broadcast material. The results of our evaluation on the new dataset and three other benchmark datasets show that our proposed method significantly outperforms the competitors and reduces diarization error rate by a large margin of over 30% with respect to the baseline.
70 - Shufan Shen , Ran Miao , Yi Wang 2020
In this report, we discribe the submission of Tongji University undergraduate team to the CLOSE track of the VoxCeleb Speaker Recognition Challenge (VoxSRC) 2020 at Interspeech 2020. We applied the RSBU-CW module to the ResNet34 framework to improve the denoising ability of the network and better complete the speaker verification task in a complex environment.We trained two variants of ResNet,used score fusion and data-augmentation methods to improve the performance of the model. Our fusion of two selected systems for the CLOSE track achieves 0.2973 DCF and 4.9700% EER on the challenge evaluation set.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا