ﻻ يوجد ملخص باللغة العربية
In this report, we discribe the submission of Tongji University undergraduate team to the CLOSE track of the VoxCeleb Speaker Recognition Challenge (VoxSRC) 2020 at Interspeech 2020. We applied the RSBU-CW module to the ResNet34 framework to improve the denoising ability of the network and better complete the speaker verification task in a complex environment.We trained two variants of ResNet,used score fusion and data-augmentation methods to improve the performance of the model. Our fusion of two selected systems for the CLOSE track achieves 0.2973 DCF and 4.9700% EER on the challenge evaluation set.
The VoxCeleb Speaker Recognition Challenge 2019 aimed to assess how well current speaker recognition technology is able to identify speakers in unconstrained or `in the wild data. It consisted of: (i) a publicly available speaker recognition dataset
We held the second installment of the VoxCeleb Speaker Recognition Challenge in conjunction with Interspeech 2020. The goal of this challenge was to assess how well current speaker recognition technology is able to diarise and recognize speakers in u
Research in speaker recognition has recently seen significant progress due to the application of neural network models and the availability of new large-scale datasets. There has been a plethora of work in search for more powerful architectures or lo
This report describes the systems submitted to the first and second tracks of the VoxCeleb Speaker Recognition Challenge (VoxSRC) 2020, which ranked second in both tracks. Three key points of the system pipeline are explored: (1) investigating multip
In this report, we describe our submission to the VoxCeleb Speaker Recognition Challenge (VoxSRC) 2020. Two approaches are adopted. One is to apply query expansion on speaker verification, which shows significant progress compared to baseline in the