ﻻ يوجد ملخص باللغة العربية
We present a method for analyzing the interaction between radiation and matter in regions of intense, relativistic shear that can arise in many astrophysical situations. We show that there is a simple velocity profile that should be manifested in regions of large shear that have lost memory of their boundary conditions, and we use this self-similar velocity profile to construct the surface of last scattering, or $tau simeq 1$ surface, as viewed from any comoving point within the flow. We demonstrate that a simple treatment of scattering from this $tau simeq 1$ surface exactly conserves photon number, and derive the rate at which the radiation field is heated due to the shear present in the flow. The components of the comoving radiation energy-momentum tensor are calculated, and we show that they have relatively simple, approximate forms that interpolate between the viscous (small shear) and streaming (large shear) limits. We put our expression for the energy-momentum tensor in a covariant form that does not depend on the explicit velocity profile within the fluid and, therefore, represents a natural means for analyzing general, radiation-dominated, relativistic shear flows.
We have investigated particle acceleration and emission from shocks and shear flows associated with an unmagnetized relativistic jet plasma propagating into an unmagnetized ambient plasma. Strong electro-magnetic fields are generated in the jet shock
We present the implementation of an implicit-explicit (IMEX) Runge-Kutta numerical scheme for general relativistic hydrodynamics coupled to an optically thick radiation field in two existing GR-hydrodynamics codes. We argue that the necessity of such
We present an analysis of the general relativistic Boltzmann equation for radiation, appropriate to the case where particles and photons interact through Thomson scattering, and derive the radiation energy-momentum tensor in the diffusion limit, with
Particle energization in shear flows is invoked to explain non-thermal emission from the boundaries of relativistic astrophysical jets. Yet, the physics of particle injection, i.e., the mechanism that allows thermal particles to participate in shear-
We report on a set of long-term general-relativistic three-dimensional (3D) multi-group (energy-dependent) neutrino-radiation hydrodynamics simulations of core-collapse supernovae. We employ a full 3D two-moment scheme with the local M1 closure, thre